login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300322
Number T(n,k) of Dyck paths of semilength n such that 2*k is the difference between the area under the right half of the path and the area under the left half of the path; triangle T(n,k), n>=0, -floor(n*(n-1)/6) <= k <= floor(n*(n-1)/6), read by rows.
3
1, 1, 2, 1, 3, 1, 1, 3, 6, 3, 1, 2, 5, 8, 12, 8, 5, 2, 1, 4, 9, 16, 22, 28, 22, 16, 9, 4, 1, 1, 4, 11, 21, 34, 49, 60, 69, 60, 49, 34, 21, 11, 4, 1, 2, 7, 15, 31, 53, 82, 114, 147, 171, 186, 171, 147, 114, 82, 53, 31, 15, 7, 2, 1, 5, 13, 30, 56, 95, 150, 216, 293, 371, 445, 495, 522, 495, 445, 371, 293, 216, 150, 95, 56, 30, 13, 5, 1
OFFSET
0,3
LINKS
FORMULA
T(n,k) = T(n,-k).
T(n,A130518(n)) = A177702(n).
EXAMPLE
/\
T(3,-1) = 1: / \/\
.
/\
/ \ /\/\
T(3,0) = 3: / \ / \ /\/\/\
.
/\
T(3,1) = 1: /\/ \
.
Triangle T(n,k) begins:
: 1 ;
: 1 ;
: 2 ;
: 1, 3, 1 ;
: 1, 3, 6, 3, 1 ;
: 2, 5, 8, 12, 8, 5, 2 ;
: 1, 4, 9, 16, 22, 28, 22, 16, 9, 4, 1 ;
: 1, 4, 11, 21, 34, 49, 60, 69, 60, 49, 34, 21, 11, 4, 1 ;
MAPLE
b:= proc(x, y, v) option remember; expand(
`if`(min(y, v, x-max(y, v))<0, 0, `if`(x=0, 1, (l-> add(add(
b(x-1, y+i, v+j)*z^((y-v)/2+(i-j)/4), i=l), j=l))([-1, 1]))))
end:
T:= n-> (p-> seq(coeff(p, z, i), i=ldegree(p)..degree(p)))(
add(b(n, (n-2*j)$2), j=0..n/2)):
seq(T(n), n=0..12);
MATHEMATICA
b[x_, y_, v_] := b[x, y, v] = Expand[If[Min[y, v, x - Max[y, v]] < 0, 0, If[x == 0, 1, Function[l, Sum[Sum[b[x - 1, y + i, v + j] z^((y - v)/2 + (i - j)/4), {i, l}], {j, l}]][{-1, 1}]]]];
T[n_] := Function[p, Table[Coefficient[p, z, i], {i, Range[Exponent[p, z, Reverse @@ # &], Exponent[p, z]]}]][Sum[b[n, n-2j, n-2j], {j, 0, n/2}]];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, May 31 2018, from Maple *)
CROSSREFS
Row sums give A000108.
Column k=0 gives A300323.
Sequence in context: A279945 A342724 A347046 * A144220 A156826 A130296
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Mar 02 2018
STATUS
approved