login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300321
T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 3, 4, 5, 6, 7 or 8 king-move adjacent elements, with upper left element zero.
7
1, 2, 2, 3, 4, 3, 5, 4, 4, 5, 8, 16, 16, 16, 8, 13, 50, 61, 61, 50, 13, 21, 112, 186, 735, 186, 112, 21, 34, 348, 977, 3486, 3486, 977, 348, 34, 55, 1028, 3875, 25797, 31345, 25797, 3875, 1028, 55, 89, 2796, 15976, 203113, 345605, 345605, 203113, 15976, 2796, 89
OFFSET
1,2
COMMENTS
Table starts
..1....2.....3........5.........8..........13............21...............34
..2....4.....4.......16........50.........112...........348.............1028
..3....4....16.......61.......186.........977..........3875............15976
..5...16....61......735......3486.......25797........203113..........1378779
..8...50...186.....3486.....31345......345605.......4705725.........55447293
.13..112...977....25797....345605.....8002885.....178277369.......3616312721
.21..348..3875...203113...4705725...178277369....7221094975.....257924884697
.34.1028.15976..1378779..55447293..3616312721..257924884697...16292595627604
.55.2796.69695.10140973.678378012.80381600442.9967764866344.1108503299923830
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 2*a(n-1) +2*a(n-2) +6*a(n-3) -10*a(n-4) -8*a(n-5) for n>6
k=3: [order 15] for n>17
k=4: [order 40] for n>43
EXAMPLE
Some solutions for n=5 k=4
..0..1..0..0. .0..1..0..0. .0..0..0..0. .0..1..1..0. .0..0..1..1
..1..0..0..0. .1..0..0..0. .1..1..0..0. .1..1..1..1. .0..0..0..0
..1..1..0..0. .1..1..0..0. .1..1..1..1. .1..1..1..1. .0..0..1..1
..1..1..1..0. .1..1..1..1. .1..1..0..0. .1..1..1..1. .1..0..1..1
..1..1..1..0. .0..1..0..0. .0..0..0..0. .0..0..1..0. .1..0..1..1
CROSSREFS
Column 1 is A000045(n+1).
Column 2 is A298148.
Sequence in context: A299052 A299814 A299689 * A026254 A091525 A091524
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Mar 02 2018
STATUS
approved