login
A300323
Number of Dyck paths of semilength n such that the area under the right half of the path equals the area under the left half of the path.
3
1, 1, 2, 3, 6, 12, 28, 69, 186, 522, 1536, 4638, 14408, 45568, 146884, 479871, 1589516, 5320854, 18000198, 61412376, 211282386, 731973720, 2553168136, 8957554412, 31604599044, 112060048354, 399227283950, 1428315878002, 5130964125124, 18499652813682
OFFSET
0,3
LINKS
FORMULA
a(n) >= A001405(n) with equality only for n <= 4.
a(n) is odd <=> n in { A000225 }.
EXAMPLE
/\
/ \ /\/\
a(3) = 3: / \ / \ /\/\/\ .
.
a(5) = 12 counts A001405(5) = 10 symmetric plus 2 non-symmetric Dyck paths:
/\ /\
/\/ \/ \ and its reversal.
MAPLE
b:= proc(x, y) option remember; expand(`if`(x=0, 1,
`if`(y<1, 0, b(x-1, y-1)*z^(2*y-1))+
`if`(x<y+2, 0, b(x-1, y+1)*z^(2*y+1))))
end:
a:= proc(n) option remember; add((p-> add(coeff(p, z, i)^2
, i=0..degree(p)))(b(n, n-2*j)), j=0..n/2)
end:
seq(a(n), n=0..32);
MATHEMATICA
b[x_, y_] := b[x, y] = Expand[If[x == 0, 1, If[y < 1, 0, b[x - 1, y - 1] z^(2y - 1)] + If[x < y + 2, 0, b[x - 1, y + 1] z^(2y + 1)]]];
a[n_] := a[n] = Sum[Function[p, Sum[Coefficient[p, z, i]^2, {i, 0, Exponent[p, z]}]][b[n, n - 2j]], {j, 0, n/2}];
Table[a[n], {n, 0, 32}] (* Jean-François Alcover, May 31 2018, from Maple *)
CROSSREFS
Column k=0 of A300322.
Cf. A000108 (all Dyck paths), A000225, A001405 (symmetric Dyck paths), A129182, A239927, A298645.
Sequence in context: A337717 A003317 A145062 * A375181 A261230 A014278
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Mar 02 2018
STATUS
approved