login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299814
T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 3, 4, 5, 6 or 8 king-move adjacent elements, with upper left element zero.
7
1, 2, 2, 3, 4, 3, 5, 4, 4, 5, 8, 16, 12, 16, 8, 13, 50, 43, 43, 50, 13, 21, 112, 91, 476, 91, 112, 21, 34, 348, 519, 1739, 1739, 519, 348, 34, 55, 1028, 1721, 11312, 11460, 11312, 1721, 1028, 55, 89, 2796, 5886, 80892, 91721, 91721, 80892, 5886, 2796, 89, 144, 8216
OFFSET
1,2
COMMENTS
Table starts
..1....2.....3.......5........8.........13...........21.............34
..2....4.....4......16.......50........112..........348...........1028
..3....4....12......43.......91........519.........1721...........5886
..5...16....43.....476.....1739......11312........80892.........470799
..8...50....91....1739....11460......91721......1087487.......10193140
.13..112...519...11312....91721....1881856.....32361748......503025918
.21..348..1721...80892..1087487...32361748...1009387819....26528688317
.34.1028..5886..470799.10193140..503025918..26528688317..1201130067486
.55.2796.24858.3083661.99383076.9210499641.792668582776.60813283508109
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 2*a(n-1) +2*a(n-2) +6*a(n-3) -10*a(n-4) -8*a(n-5) for n>6
k=3: [order 17] for n>18
k=4: [order 55] for n>58
EXAMPLE
Some solutions for n=5 k=4
..0..1..1..1. .0..0..0..1. .0..1..1..1. .0..1..0..0. .0..1..1..1
..0..1..1..1. .0..0..0..1. .0..1..1..1. .1..1..1..1. .1..1..0..0
..1..1..1..1. .0..0..0..0. .0..0..0..0. .1..1..1..1. .1..1..1..1
..1..1..0..0. .1..1..0..0. .1..0..0..0. .1..1..1..1. .0..1..1..1
..0..0..0..0. .1..1..1..1. .1..0..0..0. .1..1..1..1. .0..1..1..1
CROSSREFS
Column 1 is A000045(n+1).
Column 2 is A298148.
Sequence in context: A299128 A299886 A299052 * A299689 A300321 A026254
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 19 2018
STATUS
approved