login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A076792
Sum_{d divides n} d^2*(-1)^bigomega(d), where bigomega(n) = A001222(n).
3
1, -3, -8, 13, -24, 24, -48, -51, 73, 72, -120, -104, -168, 144, 192, 205, -288, -219, -360, -312, 384, 360, -528, 408, 601, 504, -656, -624, -840, -576, -960, -819, 960, 864, 1152, 949, -1368, 1080, 1344, 1224, -1680, -1152, -1848, -1560, -1752, 1584, -2208, -1640, 2353, -1803
OFFSET
1,2
COMMENTS
The sign of a(n) is (-1)^(bigomega(n)) = (-1)^(A001222(n)). - David A. Corneth, Jun 27 2018
LINKS
FORMULA
Multiplicative with a(p^e) = (1+(-1)^e*p^(2*e+2))/(1+p^2).
Dirichlet g.f.: zeta(s)*zeta(2*s-4)/zeta(s-2).
More generally, if b(n, k) = Sum_{d divides n} d^k*(-1)^bigomega(d) then b(n, k) is multiplicative and b(p^e, k) = (1+(-1)^e*p^(k*(e+1)))/(1+p^k).
Dirichlet g.f. for b(n, k): zeta(s)*zeta(2*s-2*k)/zeta(s-k).
b(n, 0) = A010052(n), b(n, 1) = A061020(n).
a(n) = A008836(n)*n^2* Sum(d|n, A008836(d)/d^2). - Enrique Pérez Herrero, Jul 10 2012
a(n) = (-1)^bigomega(n) * Sum_{d|n, d is a perfect square} A007434(n/d). - Daniel Suteu, Jun 27 2018
Sum_{k=1..n} |a(k)| ~ n^3 * zeta(6)/(3*zeta(3)). - Daniel Suteu, Apr 06 2019
Dirichlet g.f. for |a(n)|: zeta(s-2)*zeta(2*s)/zeta(s). - Vaclav Kotesovec, Apr 06 2019
EXAMPLE
As 12 = 2^2 * 3, a(12) = a(2^2) * a(3) = (1+(-1)^2*2^(2*2+2))/(1+2^2) * (1+(-1)^1*3^(2*1+2))/(1+3^2) = 13 * -8 = -104. - David A. Corneth, Jun 27 2018
MATHEMATICA
Array[DivisorSum[#, #^2*(-1)^PrimeOmega[#] &] &, 50] (* Michael De Vlieger, Jun 27 2018 *)
f[p_, e_] := (1 + (-1)^e*p^(2*e+2))/(1 + p^2); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 27 2023 *)
PROG
(PARI) a(n) = sumdiv(n, d, d^2 * (-1)^bigomega(d)); \\ Daniel Suteu, Jun 27 2018
(PARI) a(n) = my(f=factor(n)); prod(k=1, #f~, ((-1)^f[k, 2] * f[k, 1]^(2 * f[k, 2] + 2) + 1) / (1 + f[k, 1]^2)); \\ Daniel Suteu, Jun 27 2018
CROSSREFS
KEYWORD
mult,sign,easy
AUTHOR
Vladeta Jovovic, Nov 16 2002
STATUS
approved