login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A061020
Negate primes in factorizations of divisors of n, then sum.
16
1, -1, -2, 3, -4, 2, -6, -5, 7, 4, -10, -6, -12, 6, 8, 11, -16, -7, -18, -12, 12, 10, -22, 10, 21, 12, -20, -18, -28, -8, -30, -21, 20, 16, 24, 21, -36, 18, 24, 20, -40, -12, -42, -30, -28, 22, -46, -22, 43, -21, 32, -36, -52, 20, 40, 30, 36, 28, -58, 24, -60, 30, -42, 43, 48, -20, -66, -48, 44, -24, -70, -35
OFFSET
1,3
COMMENTS
Analog of sigma function A000203(n) with primes negated.
Unsigned sequence |a(n)| (A206369) gives the number of numbers 1 <= k <= n for which GCD(k,n) is a square. |a(n)| = Sum_{d|n} d*(-1)^bigomega(n/d). - Vladeta Jovovic, Dec 29 2002
LINKS
Dana G. Korssjoen, Biyao Li, Stefan Steinerberger, Raghavendra Tripathi, and Ruimin Zhang, Finding structure in sequences of real numbers via graph theory: a problem list, Involve, a Journal of Mathematics, Vol. 15, No. 2 (2022), pp. 251-270; arXiv preprint, arXiv:2012.04625 [math.CO], 2020-2021.
László Tóth, A survey of the alternating sum-of-divisors function, arXiv:1111.4842 [math.NT], 2011-2014.
FORMULA
Replace each divisor d of n by A061019[d] and sum. Replace p^q with (1-(-p)^(q+1))/(1+p) in prime factorization of n.
Inverse mobius transform of A061019. In other words a(n) = Sum_{d|n} d*(-1)^bigomega(d), where bigomega(n) = A001222(n).
a(n) = Sum_{d|n} d*mu(core(d)) where core(x) = A007913(x) is the smallest number such that x*core(x) is a square. - Benoit Cloitre, Apr 07 2002
G.f.: A(x) = Sum_{k>=1} lambda(k)*k*x^k/(1 - x^k) where lambda(k) is the Liouville function, A008836. - Stuart Clary, Apr 15 2006
G.f.: A(x) is x times the logarithmic derivative of A118206(x). - Stuart Clary, Apr 15 2006
Dirichlet g.f.: zeta(s)*zeta(2 s - 2)/zeta(s - 1). - Stuart Clary, Apr 15, 2006
a(n) = Sum_{d|n} d*lambda(d), where lambda(n) is A008836(n). - Enrique Pérez Herrero, Aug 29 2013
EXAMPLE
a(12) = 1-2-3+4+6-12 = (1-2+4)*(1-3) = -6.
MAPLE
with(numtheory):
A061020 := proc(n) local d; add(d*(-1)^bigomega(d), d=divisors(n)) end:
seq(A061020(n), n=1..72); # Peter Luschny, Aug 29 2013
MATHEMATICA
nmax = 72; Drop[ CoefficientList[ Series[ Sum[ LiouvilleLambda[k] k x^k/(1 - x^k), {k, 1, nmax} ], {x, 0, nmax} ], x ], 1 ] (* Stuart Clary, Apr 15 2006, updated by Jean-François Alcover, Dec 04 2017 *)
f[p_, e_] := ((-p)^(e+1)-1)/(-p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 24 2023 *)
PROG
(PARI) for(n=1, 100, print1(sumdiv(n, d, (d)*moebius(core(d))), ", "))
(PARI) a(n)=if(n<1, 0, direuler(p=2, n, 1/(1-X)/(1+p*X))[n]) \\ Ralf Stephan
(PARI) A061020(n) = {my(f=factorint(n)); prod(k=1, #f[, 2], ((-f[k, 1])^(f[k, 2]+1)-1)/(-f[k, 1]-1))} \\ Andrew Lelechenko, Apr 22 2014
(Haskell)
a061020 = sum . map a061019 . a027750_row
-- Reinhard Zumkeller, Feb 08 2012
CROSSREFS
KEYWORD
easy,sign,mult
AUTHOR
Marc LeBrun, Apr 13 2001
STATUS
approved