login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Product t2(q^d); d | 5, where t2 = theta2(q)/(2*q^(1/4)).
5

%I #29 Mar 12 2021 22:24:42

%S 1,1,0,1,0,1,2,0,1,0,1,1,0,0,0,3,1,0,1,0,1,2,0,0,0,1,1,0,1,0,2,1,0,2,

%T 0,0,3,0,0,0,1,1,0,1,0,2,0,0,0,0,2,3,0,1,0,1,1,0,1,0,3,0,0,0,0,1,2,0,

%U 0,0,1,2,0,0,0,2,1,0,3,0,0,2,0,1,0,2,1,0,0,0,1,1,0,1,0,1,3,0,0,0,0,0,0,1,0

%N Product t2(q^d); d | 5, where t2 = theta2(q)/(2*q^(1/4)).

%C Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).

%C Also the number of positive odd solutions to equation x^2 + 5*y^2 = 8*n + 6. - _Seiichi Manyama_, May 28 2017

%H Seiichi Manyama, <a href="/A033764/b033764.txt">Table of n, a(n) for n = 0..10000</a>

%H A. Berkovich and H. Yesilyurt, <a href="http://arxiv.org/abs/math/0611300">Ramanujan's Identities and Representation of Integers by Certain Binary and Quaternary Quadratic Forms</a>, arXiv:math/0611300 [math.NT], 2006-2007, see Equation (3.19).

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%F Expansion of psi(q) * psi(q^5) where psi() is a Ramanujan theta function.

%F Expansion of q^(-3/4) * eta(q^2)^2 * eta(q^10)^2 / (eta(q) * eta(q^5)) in powers of q.

%F Euler transform of period 10 sequence [ 1, -1, 1, -1, 2, -1, 1, -1, 1, -2, ...]. - _Michael Somos_, Mar 21 2008

%F G.f.: Sum_{k} (x^(3*k) + x^(7*k+1)) / (1 - x^(20*k+5)) = Sum_{k} (x^k + x^(9*k+6)) / (1 - x^(20*k+15)).

%e q^3 + q^7 + q^15 + q^23 + 2*q^27 + q^35 + q^43 + q^47 + 3*q^63 + q^67 + ...

%t QP = QPochhammer; s = QP[q^2]^2*(QP[q^10]^2/(QP[q]*QP[q^5])) + O[q]^105; CoefficientList[s, q] (* _Jean-François Alcover_, Nov 30 2015, adapted from PARI *)

%o (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^10 + A)^2 / eta(x + A) / eta(x^5 + A), n))} /* _Michael Somos_, Mar 21 2008 */

%K nonn

%O 0,7

%A _N. J. A. Sloane_