login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111949
Expansion of eta(q) * eta(q^2) * eta(q^10) * eta(q^20) / (eta(q^4) * eta(q^5)) in powers of q.
3
1, -1, -2, 1, 1, 2, -2, -1, 3, -1, 0, -2, 0, 2, -2, 1, 0, -3, 0, 1, 4, 0, -2, 2, 1, 0, -4, -2, 2, 2, 0, -1, 0, 0, -2, 3, 0, 0, 0, -1, 2, -4, -2, 0, 3, 2, -2, -2, 3, -1, 0, 0, 0, 4, 0, 2, 0, -2, 0, -2, 2, 0, -6, 1, 0, 0, -2, 0, 4, 2, 0, -3, 0, 0, -2, 0, 0, 0, 0, 1, 5, -2, -2, 4, 0, 2, -4, 0, 2, -3, 0, -2, 0, 2, 0, 2, 0, -3, 0, 1, 2, 0, -2, 0, 4
OFFSET
1,3
COMMENTS
Number 37 of the 74 eta-quotients listed in Table I of Martin (1996).
LINKS
Y. Martin, Multiplicative eta-quotients, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.
FORMULA
Euler transform of period 20 sequence [-1, -2, -1, -1, 0, -2, -1, -1, -1, -2, -1, -1, -1, -2, 0, -1, -1, -2, -1, -2, ...].
a(n) is multiplicative with a(p^e) = (-1)^e if p = 2, a(p^e) = 1 if p = 5, a(p^e) = (1 + (-1)^e) / 2 if p == 11, 13, 17, 19 (mod 20), a(p^e) = e + 1 if p == 1, 9 (mod 20), a(p^e) = (e + 1)*(-1)^e if p == 3, 7 (mod 20).
G.f.: Sum_{k>0} Kronecker(-4, k) * x^k * (1 - x^k) * (1 - x^(2*k)) / (1 - x^(5*k)).
G.f.: Sum_{k>0} Kronecker(k, 5) * x^k / (1 + x^(2*k)).
G.f.: x * Product_{k>0} (1 - x^k) * (1 + x^(5*k)) * (1 - x^(20*k)) / (1 + x^(2*k)).
|a(n)| = A035170(n). a(2*n) = -a(n). a(2*n + 1) = A129391(n). a(4*n + 3) = -2 * A033764(n).
a(5*n) = a(n). - Michael Somos, May 19 2015
EXAMPLE
G.f. = q - q^2 - 2*q^3 + q^4 + q^5 + 2*q^6 - 2*q^7 - q^8 + 3*q^9 - q^10 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ q QPochhammer[ q] QPochhammer[ q^2] QPochhammer[ q^10] QPochhammer[ q^20] / (QPochhammer[ q^4] QPochhammer[ q^5]), {q, 0, n}]; (* Michael Somos, May 19 2015 *)
a[ n_] := If[ n < 1, 0, Sum[ Mod[d, 2] (-1)^Quotient[d, 2] KroneckerSymbol[ n/d, 5], { d, Divisors[ n]}]]; (* Michael Somos, May 19 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A) * eta(x^2 + A) * eta(x^10 + A) * eta(x^20 + A) / eta(x^4 + A) / eta(x^5 + A), n))};
(PARI) {a(n) = if( n<1, 0, sumdiv( n, d, (d%2) * (-1)^(d\2) * kronecker( n/d, 5)))};
(PARI) {a(n) = if( n<1, 0, qfrep( [1, 0; 0, 5], n)[n] - qfrep( [2, 1; 1, 3], n)[n])};
CROSSREFS
KEYWORD
sign,mult
AUTHOR
Michael Somos, Aug 22 2005
STATUS
approved