login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129391
Expansion of phi(-x) * phi(x^5) / (chi(-x^2) * chi(-x^10)) in powers of x where phi(), chi() are Ramanujan theta functions.
4
1, -2, 1, -2, 3, 0, 0, -2, 0, 0, 4, -2, 1, -4, 2, 0, 0, -2, 0, 0, 2, -2, 3, -2, 3, 0, 0, 0, 0, 0, 2, -6, 0, -2, 4, 0, 0, -2, 0, 0, 5, -2, 0, -4, 2, 0, 0, 0, 0, 0, 2, -2, 4, -2, 2, 0, 0, -2, 0, 0, 1, -4, 1, -2, 4, 0, 0, -4, 0, 0, 4, 0, 2, -6, 2, 0, 0, 0, 0, 0
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/2) * eta(q)^2 * eta(q^4) * eta(q^10)^4 / (eta(q^2)^2 * eta(q^5)^2 * eta(q^20)) in powers of q.
Euler transform of period 20 sequence [ -2, 0, -2, -1, 0, 0, -2, -1, -2, -2, -2, -1, -2, 0, 0, -1, -2, 0, -2, -2, ...].
a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0, b(5^e) = 1, b(p^e) = (-1)^e* (e+1) if p == 3, 7 (mod 20), b(p^e) = e+1 if p == 1, 9 (mod 20), b(p^e) = (1+(-1)^e)/2 if p == 11, 13, 17, 19 (mod 20).
G.f.: Sum_{k>0} a(k) * x^(2*k - 1) = Sum_{k>0} (-1)^k * f(x^(2*k - 1)) where f(x) := x * (1 - x^2) * (1 - x^6) / (1 - x^10).
a(n) = (-1)^n * A129390(n).
a(n) = A111949(2*n + 1) = A143323(2*n).
G.f. is a period 1 Fourier series which satisfies f(-1 / (40 t)) = 20^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A143323.
EXAMPLE
G.f. = 1 - 2*x + x^2 - 2*x^3 + 3*x^4 - 2*x^7 + 4*x^10 - 2*x^11 + x^12 - 4*x^13 + ...
G.f. = q - 2*q^3 + q^5 - 2*q^7 + 3*q^9 - 2*q^15 + 4*q^21 - 2*q^23 + q^25 - ...
MATHEMATICA
a[ n_] := If[ n < 0, 0, (-1)^n DivisorSum[ 2 n + 1, KroneckerSymbol[ -20, #]&]]; (* Michael Somos, Nov 12 2015 *)
PROG
(PARI) {a(n) = if( n<0, 0, (-1)^n * sumdiv(2*n + 1, d, kronecker( -20, d)))};
(PARI) {a(n) = my(A, p, e); if( n<0, 0, n = 2*n + 1; A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==5, 1, p%20 <10, (-1)^( ((p%20)%4 == 3)*e) * (e+1), 1-e%2 )))};
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^4 + A) * eta(x^10 + A)^4 / (eta(x^2 + A)^2 * eta(x^5 + A)^2 * eta(x^20 + A)), n))};
CROSSREFS
Sequence in context: A127510 A328362 A158810 * A129390 A345255 A348910
KEYWORD
sign
AUTHOR
Michael Somos, Apr 13 2007
STATUS
approved