login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158810
Coefficients of the differentiated row polynomials of the triangular Hadamard matrices of A158800: p(x,n)=If[n less than or equal to 2^m,Sum[H(2^m)[[k]]*x^(1-k),{k,1,n}],If[n greater than m then m+1]
0
0, -1, 0, -2, -1, -2, 3, 0, 0, 0, -4, -1, 0, 0, -4, 5, 0, -2, 0, -4, 0, 6, -1, -2, 3, -4, 5, 6, -7, 0, 0, 0, 0, 0, 0, 0, -8, -1, 0, 0, 0, 0, 0, 0, -8, 9, 0, -2, 0, 0, 0, 0, 0, -8, 0, 10, -1, -2, 3, 0, 0, 0, 0, -8, 9, 10, -11, 0, 0, 0, -4, 0, 0, 0, -8, 0, 0, 0, 12, -1, 0, 0, -4, 5, 0, 0, -8, 9, 0, 0
OFFSET
0,4
COMMENTS
Row sums are:
{0, -1, -2, 0, -4, 0, 0, 0, -8, 0, 0, 0, 0, 0, 0, 0,...}.
The absolute values of the row sums are:
{0, 1, 2, 6, 4, 10, 12, 28, 8, 18, 20, 44, 24, 52, 56, 120,...}.
In a quantum Heisenberg matrix mechanics based on the triangular Hadamards
where the H(n) behave like wave functions Phi(n), these polynomials
are equivalent to the time dependent differentials:
Hamiltonian.Phi(n)=-Hbar*I*dPhi(n)/dt
FORMULA
Sum of the k-th row polynomial:
p(x,n)=If[n>2^m,Sum[H(2^m)[[k]]*x^(1-k),{k,1,n}]];
t(n,l)=coefficients(p(x,n),x)
EXAMPLE
{0},
{-1},
{0, -2},
{-1, -2, 3},
{0, 0, 0, -4},
{-1, 0, 0, -4, 5},
{0, -2, 0, -4, 0, 6},
{-1, -2, 3, -4, 5, 6, -7},
{ 0, 0, 0, 0, 0, 0, 0, -8},
{-1, 0, 0, 0, 0, 0, 0, -8, 9},
{0, -2, 0, 0, 0, 0, 0, -8, 0, 10},
{-1, -2, 3, 0, 0, 0, 0, -8, 9, 10, -11},
{0, 0, 0, -4, 0, 0, 0, -8, 0, 0, 0, 12},
{-1, 0, 0, -4, 5, 0, 0, -8, 9, 0, 0, 12, -13},
{0, -2, 0, -4, 0, 6, 0, -8, 0, 10, 0, 12, 0, -14},
{-1, -2, 3, -4, 5, 6, -7, -8, 9, 10, -11, 12, -13, -14, 15}
MATHEMATICA
Clear[HadamardMatrix];
MatrixJoinH[A_, B_] := Transpose[Join[Transpose[A], Transpose[B]]];
KroneckerProduct[M_, N_] := Module[{M1, N1, LM, LN, N2},
M1 = M;
N1 = N;
LM = Length[M1];
LN = Length[N1];
Do[M1[[i, j]] = M1[[i, j]]N1, {i, 1, LM}, {j, 1, LM}];
Do[M1[[i, 1]] = MatrixJoinH[M1[[i, 1]], M1[[i, j]]], {j, 2, LM}, {i, 1, LM}];
N2 = {};
Do[AppendTo[N2, M1[[i, 1]]], {i, 1, LM}];
N2 = Flatten[N2];
Partition[N2, LM*LN, LM*LN]]
HadamardMatrix[2] := {{1, 0}, {1, -1}};
HadamardMatrix[n_] := Module[{m}, m = {{1, 0}, {1, -1}}; KroneckerProduct[m, HadamardMatrix[n/2]]];
M = HadamardMatrix[16];
Table[D[Sum[M[[n]][[m]]*x^(m - 1), {m, 1, n}], {x, 1}], {n, 1, Length[M]}];
Table[CoefficientList[D[Sum[ M[[n]][[m]]*x^(m - 1), {m, 1, n}], {x, 1}], x], {n, 1, Length[M]}];
Flatten[%]
CROSSREFS
KEYWORD
sign,tabl,uned
AUTHOR
STATUS
approved