The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A158810 Coefficients of the differentiated row polynomials of the triangular Hadamard matrices of A158800: p(x,n)=If[n less than or equal to 2^m,Sum[H(2^m)[[k]]*x^(1-k),{k,1,n}],If[n greater than m then m+1] 0
0, -1, 0, -2, -1, -2, 3, 0, 0, 0, -4, -1, 0, 0, -4, 5, 0, -2, 0, -4, 0, 6, -1, -2, 3, -4, 5, 6, -7, 0, 0, 0, 0, 0, 0, 0, -8, -1, 0, 0, 0, 0, 0, 0, -8, 9, 0, -2, 0, 0, 0, 0, 0, -8, 0, 10, -1, -2, 3, 0, 0, 0, 0, -8, 9, 10, -11, 0, 0, 0, -4, 0, 0, 0, -8, 0, 0, 0, 12, -1, 0, 0, -4, 5, 0, 0, -8, 9, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
Row sums are:
{0, -1, -2, 0, -4, 0, 0, 0, -8, 0, 0, 0, 0, 0, 0, 0,...}.
The absolute values of the row sums are:
{0, 1, 2, 6, 4, 10, 12, 28, 8, 18, 20, 44, 24, 52, 56, 120,...}.
In a quantum Heisenberg matrix mechanics based on the triangular Hadamards
where the H(n) behave like wave functions Phi(n), these polynomials
are equivalent to the time dependent differentials:
Hamiltonian.Phi(n)=-Hbar*I*dPhi(n)/dt
LINKS
FORMULA
Sum of the k-th row polynomial:
p(x,n)=If[n>2^m,Sum[H(2^m)[[k]]*x^(1-k),{k,1,n}]];
t(n,l)=coefficients(p(x,n),x)
EXAMPLE
{0},
{-1},
{0, -2},
{-1, -2, 3},
{0, 0, 0, -4},
{-1, 0, 0, -4, 5},
{0, -2, 0, -4, 0, 6},
{-1, -2, 3, -4, 5, 6, -7},
{ 0, 0, 0, 0, 0, 0, 0, -8},
{-1, 0, 0, 0, 0, 0, 0, -8, 9},
{0, -2, 0, 0, 0, 0, 0, -8, 0, 10},
{-1, -2, 3, 0, 0, 0, 0, -8, 9, 10, -11},
{0, 0, 0, -4, 0, 0, 0, -8, 0, 0, 0, 12},
{-1, 0, 0, -4, 5, 0, 0, -8, 9, 0, 0, 12, -13},
{0, -2, 0, -4, 0, 6, 0, -8, 0, 10, 0, 12, 0, -14},
{-1, -2, 3, -4, 5, 6, -7, -8, 9, 10, -11, 12, -13, -14, 15}
MATHEMATICA
Clear[HadamardMatrix];
MatrixJoinH[A_, B_] := Transpose[Join[Transpose[A], Transpose[B]]];
KroneckerProduct[M_, N_] := Module[{M1, N1, LM, LN, N2},
M1 = M;
N1 = N;
LM = Length[M1];
LN = Length[N1];
Do[M1[[i, j]] = M1[[i, j]]N1, {i, 1, LM}, {j, 1, LM}];
Do[M1[[i, 1]] = MatrixJoinH[M1[[i, 1]], M1[[i, j]]], {j, 2, LM}, {i, 1, LM}];
N2 = {};
Do[AppendTo[N2, M1[[i, 1]]], {i, 1, LM}];
N2 = Flatten[N2];
Partition[N2, LM*LN, LM*LN]]
HadamardMatrix[2] := {{1, 0}, {1, -1}};
HadamardMatrix[n_] := Module[{m}, m = {{1, 0}, {1, -1}}; KroneckerProduct[m, HadamardMatrix[n/2]]];
M = HadamardMatrix[16];
Table[D[Sum[M[[n]][[m]]*x^(m - 1), {m, 1, n}], {x, 1}], {n, 1, Length[M]}];
Table[CoefficientList[D[Sum[ M[[n]][[m]]*x^(m - 1), {m, 1, n}], {x, 1}], x], {n, 1, Length[M]}];
Flatten[%]
CROSSREFS
Sequence in context: A276990 A127510 A328362 * A129391 A129390 A345255
KEYWORD
sign,tabl,uned
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 20 02:34 EDT 2024. Contains 372703 sequences. (Running on oeis4.)