login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A111951 Period 8: repeat [0,3,1,2,2,1,3,0]. 1
0, 3, 1, 2, 2, 1, 3, 0, 0, 3, 1, 2, 2, 1, 3, 0, 0, 3, 1, 2, 2, 1, 3, 0, 0, 3, 1, 2, 2, 1, 3, 0, 0, 3, 1, 2, 2, 1, 3, 0, 0, 3, 1, 2, 2, 1, 3, 0, 0, 3, 1, 2, 2, 1, 3, 0, 0, 3, 1, 2, 2, 1, 3, 0, 0, 3, 1, 2, 2, 1, 3, 0, 0, 3, 1, 2, 2, 1, 3, 0, 0, 3, 1, 2, 2, 1, 3, 0, 0, 3, 1, 2, 2, 1, 3, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Permutation of {0,1,2,3} followed by its reversal, repeated.

LINKS

Antti Karttunen, Table of n, a(n) for n = 0..8191

Index entries for linear recurrences with constant coefficients, signature (1,-1,1,-1,1,-1,1).

FORMULA

G.f.: (3x + x^2 + 2x^3 + 2x^4 + x^5 + 3x^6)/(1 - x^8);

a(n) = a(n-1) - a(n-2) + a(n-3) - a(n-4) + a(n-5) - a(n-6) + a(n-7);

a(n) = n(7n-1)/2 mod 4 = A022264(n) mod 4.

G.f.: -x*(3 - 2*x + 4*x^2 - 2*x^3 + 3*x^4) / ( (x-1)*(1+x^2)*(1+x^4) ). - R. J. Mathar, Feb 20 2015

a(n) = (3 + r/2 - s/2 + 2*cos(Pi*(1+2*n-r-s+t)/8) - 2*cos(Pi*(1-2*n+r-s+t)/8) - 2*sin(Pi*(1-2*n-r+s+t)/8))/2 where r = 2*sin(n*Pi/2), s = 2*cos(n*Pi/2) and t = cos(n*Pi). - Wesley Ivan Hurt, Oct 05 2018

PROG

(Scheme) (define (A111951 n) (list-ref '(0 3 1 2 2 1 3 0) (modulo n 8))) ;; Antti Karttunen, Aug 10 2017

CROSSREFS

Cf. A110549, A110550.

Sequence in context: A088429 A134658 A296518 * A222593 A107033 A115110

Adjacent sequences:  A111948 A111949 A111950 * A111952 A111953 A111954

KEYWORD

easy,nonn

AUTHOR

Paul Barry, Aug 22 2005

EXTENSIONS

Name changed, the original name moved to comments. - Antti Karttunen, Aug 10 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 21:11 EDT 2021. Contains 343117 sequences. (Running on oeis4.)