login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A028586
Theta series of lattice with Gram matrix [2 1; 1 3].
4
1, 0, 2, 4, 0, 0, 0, 4, 2, 0, 2, 0, 4, 0, 0, 4, 0, 0, 6, 0, 0, 0, 0, 4, 0, 0, 0, 8, 4, 0, 0, 0, 2, 0, 0, 4, 0, 0, 0, 0, 2, 0, 8, 4, 0, 0, 0, 4, 4, 0, 2, 0, 0, 0, 0, 0, 0, 0, 4, 0, 4, 0, 0, 12, 0, 0, 0, 4, 0, 0, 0, 0, 6, 0, 0, 4, 0, 0, 0, 0, 0, 0, 4, 4, 0, 0, 0, 8, 0, 0, 6, 0, 4, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 4
OFFSET
0,3
COMMENTS
Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).
The number of integer solutions (x, y) to 2*x^2 + 2*x*y + 3*y^2 = n, discriminant -20. - Ray Chandler, Jul 12 2014
LINKS
A. Berkovich and H. Yesilyurt, Ramanujan's identities and representation of integers by certain binary and quaternary quadratic forms, arXiv:math/0611300 [math.NT], 2006-2007, page 8 equation (3.18).
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
G.f.: Sum_{n,m} x^(2*n^2 + 2*m*n + 3*m^2). - Michael Somos, Jan 31 2011
Expansion of (theta_3(z)*theta_3(5z)+theta_2(z)*theta_2(5z)).
Expansion of phi(q^2) * phi(q^10) + 4 * q^3 * psi(q^4) * psi(q^20) in powers of q where phi(q),psi(q) are Ramanujan theta functions. - Michael Somos, Aug 13 2006
If p is prime then a(p) is nonzero iff p is in A106865.
0=a(n)a(2n) and 2*A035170(n)=a(n)+a(2n) if n>0. - Michael Somos, Oct 21 2006
EXAMPLE
1 + 2*q^2 + 4*q^3 + 4*q^7 + 2*q^8 + 2*q^10 + 4*q^12 + 4*q^15 + 6*q^18 + 4*q^23 + 8*q^27 + 4*q^28 + 2*q^32 + 4*q^35 + 2*q^40 + 8*q^42 + 4*q^43 + 4*q^47 + ...
MATHEMATICA
terms = 104; phi[q_] := EllipticTheta[3, 0, q]; chi[q_] := ((1 - InverseEllipticNomeQ[q])*InverseEllipticNomeQ[q]/(16*q))^(-1/24); psi[q_] := (1/2)*q^(-1/8)*EllipticTheta[2, 0, q^(1/2)]; s = phi[q^2]*phi[q^10] + 4*q^3*psi[q^4]*psi[q^20] + O[q]^(terms+1); CoefficientList[s, q] (* Jean-François Alcover, Jul 04 2017, after Michael Somos *)
r[n_]:=Reduce[{x, y}.{{2, 1}, {1, 3}}.{x, y}==n, {x, y}, Integers]; Table[rn=r[n]; Which[rn===False, 0, Head[rn]===Or, Length[rn], Head[rn]===And, 1], {n, 0, 105}] (* Vincenzo Librandi, Feb 23 2020 *)
PROG
(PARI) {a(n) = if( n<1, n==0, qfrep([2, 1; 1, 3], n)[n] * 2)} /* Michael Somos, Aug 13 2006 */
CROSSREFS
Sequence in context: A126732 A371648 A347679 * A253179 A300723 A263788
KEYWORD
nonn
STATUS
approved