login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253179
a(n) = mu(n)*Sum_{k=1..n} (n/k) where mu(n) is Möbius (or Moebius) function and (x/y) is Kronecker's symbol.
0
1, -1, 0, 0, 0, 2, -4, 0, 0, 2, -2, 0, 0, 4, 6, 0, 0, 0, -2, 0, 0, 2, -6, 0, 0, 6, 0, 0, 0, -4, -12, 0, 0, 4, 4, 0, 0, 6, 12, 0, 0, -4, 0, 0, 0, 4, -10, 0, 0, 0, 4, 0, 0, 0, 18, 0, 0, 2, -6, 0, 0, 8, 0, 0, 0, -8, 2, 0, 0, -4, -14, 0, 0, 10, 0, 0, 0, -4, -22, 0, 0, 4, -4, 0, 0, 10, 14, 0, 0, 0, 2, 0, 0, 8, 14, 0, 0, 0, 0, 0, 0, -4, -22, 0, 0
OFFSET
1,6
COMMENTS
Conjecture: the partial sum of this sequence changes sign infinitely often.
All terms are congruent to 0 (mod 2) for n>2.
FORMULA
a(n) = A008683(n)*A071961(n).
MATHEMATICA
f[n_] := MoebiusMu[n] * Sum[ KroneckerSymbol[n, k], {k, n}]; Array[f, 100]
PROG
(PARI) a(n) = moebius(n)*sum(k=1, n, kronecker(n, k)); \\ Michel Marcus, Mar 24 2015
CROSSREFS
Sequence in context: A371648 A347679 A028586 * A300723 A263788 A355335
KEYWORD
sign
AUTHOR
Robert G. Wilson v, Mar 23 2015
STATUS
approved