login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A253180 Number T(n,k) of 2n-length strings of balanced parentheses of exactly k different types that are introduced in ascending order; triangle T(n,k), n>=0, 0<=k<=n, read by rows. 14
1, 0, 1, 0, 2, 2, 0, 5, 15, 5, 0, 14, 98, 84, 14, 0, 42, 630, 1050, 420, 42, 0, 132, 4092, 11880, 8580, 1980, 132, 0, 429, 27027, 129129, 150150, 60060, 9009, 429, 0, 1430, 181610, 1381380, 2432430, 1501500, 380380, 40040, 1430, 0, 4862, 1239810, 14707550, 37777740, 33795762, 12864852, 2246244, 175032, 4862 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

In general, column k>0 is asymptotic to (4*k)^n / (k!*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jun 01 2015

LINKS

Alois P. Heinz, Rows n = 0..140, flattened

FORMULA

T(n,k) = A256061(n,k)/k! = Sum_{i=0..k} (-1)^i * C(k,i) * (k-i)^n * A000108(n) / A000142(n).

EXAMPLE

T(3,1) = 5: ()()(), ()(()), (())(), (()()), ((())).

T(3,2) = 15: ()()[], ()[](), ()[][], ()([]), ()[()], ()[[]], (())[], ([])(), ([])[], (()[]), ([]()), ([][]), (([])), ([()]), ([[]]).

T(3,3) = 5: ()[]{}, ()[{}], ([]){}, ([]{}), ([{}]).

Triangle T(n,k) begins:

  1;

  0,   1;

  0,   2,     2;

  0,   5,    15,      5;

  0,  14,    98,     84,     14;

  0,  42,   630,   1050,    420,    42;

  0, 132,  4092,  11880,   8580,  1980,  132;

  0, 429, 27027, 129129, 150150, 60060, 9009, 429;

MAPLE

ctln:= proc(n) option remember; binomial(2*n, n)/(n+1) end:

A:= proc(n, k) option remember; k^n*ctln(n) end:

T:= (n, k)-> add(A(n, k-i)*(-1)^i/((k-i)!*i!), i=0..k):

seq(seq(T(n, k), k=0..n), n=0..10);

MATHEMATICA

A[n_, k_] := A[n, k] = k^n*CatalanNumber[n]; T[0, 0] = 1; T[n_, k_] := Sum[A[n, k-i]*(-1)^i/((k-i)!*i!), {i, 0, k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 11 2017, adapted from Maple *)

CROSSREFS

Columns k=0-10 give: A000007, A000108 (for n>0), A258390, A258391, A258392, A258393, A258394, A258395, A258396, A258397, A258398.

Main diagonal gives A000108.

First lower diagonal gives A002740(n+2).

T(2n,n) gives A258399.

Row sums give A064299.

Cf. A000142, A256061.

Sequence in context: A277295 A254749 A129936 * A295214 A221408 A221396

Adjacent sequences:  A253177 A253178 A253179 * A253181 A253182 A253183

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Mar 23 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 13 11:09 EST 2018. Contains 317133 sequences. (Running on oeis4.)