login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A106865
Primes of the form 2x^2 + 2xy + 3y^2.
13
2, 3, 7, 23, 43, 47, 67, 83, 103, 107, 127, 163, 167, 223, 227, 263, 283, 307, 347, 367, 383, 443, 463, 467, 487, 503, 523, 547, 563, 587, 607, 643, 647, 683, 727, 743, 787, 823, 827, 863, 883, 887, 907, 947, 967, 983, 1063, 1087, 1103, 1123, 1163, 1187
OFFSET
1,1
COMMENTS
Discriminant = -20.
Also: Primes of the form 2x^2 - 2xy + 3y^2 with x and y nonnegative. Cf. A106864.
Primes congruent to 2, 3, 7 modulo 20. - Michael Somos, Aug 13 2006
In Z[sqrt(-5)], these numbers are irreducible but not prime. In terms of ideals, they generate principal ideals that are not prime (or maximal). The equation x^2 + 5y^2 = a(n) has no solutions, but x^2 = -5 (mod a(n)) does. For example, 2 * 3 = (1 - sqrt(-5))(1 + sqrt(-5)) and 7 * 23 = (9 - 4*sqrt(-5))(9 + 4*sqrt(-5)). - Alonso del Arte, Dec 19 2015
REFERENCES
David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989; see p. 33.
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
Complement(A000040, A020669).
EXAMPLE
x = 1, y = 1 gives 2x^2 + 2xy + 3y^2 = 2 + 2 + 3 = 7.
x = 1, y = -3 gives 2x^2 + 2xy + 3y^2 = 2 - 6 + 27 = 23.
MAPLE
select(isprime, [2, seq(seq(5+s+20*i, s=[-2, 2]), i=0..10^3)]); # Robert Israel, Dec 23 2015
MATHEMATICA
QuadPrimes2[2, -2, 3, 10000] (* see A106856 *)
PROG
(PARI) is(n)=isprime(n) && #qfbsolve(Qfb(2, 2, 3), n)>0 \\ Charles R Greathouse IV, Feb 09 2017
CROSSREFS
For n > 1, a(n) = A122870(n-1). Cf. A216816, A106864.
Sequence in context: A231075 A072686 A002230 * A267504 A000057 A037231
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 09 2005
STATUS
approved