OFFSET
1,1
COMMENTS
Discriminant = -20.
Also: Primes of the form 2x^2 - 2xy + 3y^2 with x and y nonnegative. Cf. A106864.
Primes congruent to 2, 3, 7 modulo 20. - Michael Somos, Aug 13 2006
In Z[sqrt(-5)], these numbers are irreducible but not prime. In terms of ideals, they generate principal ideals that are not prime (or maximal). The equation x^2 + 5y^2 = a(n) has no solutions, but x^2 = -5 (mod a(n)) does. For example, 2 * 3 = (1 - sqrt(-5))(1 + sqrt(-5)) and 7 * 23 = (9 - 4*sqrt(-5))(9 + 4*sqrt(-5)). - Alonso del Arte, Dec 19 2015
REFERENCES
David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989; see p. 33.
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
EXAMPLE
x = 1, y = 1 gives 2x^2 + 2xy + 3y^2 = 2 + 2 + 3 = 7.
x = 1, y = -3 gives 2x^2 + 2xy + 3y^2 = 2 - 6 + 27 = 23.
MAPLE
select(isprime, [2, seq(seq(5+s+20*i, s=[-2, 2]), i=0..10^3)]); # Robert Israel, Dec 23 2015
MATHEMATICA
QuadPrimes2[2, -2, 3, 10000] (* see A106856 *)
PROG
(PARI) is(n)=isprime(n) && #qfbsolve(Qfb(2, 2, 3), n)>0 \\ Charles R Greathouse IV, Feb 09 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 09 2005
STATUS
approved