login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122870
Primes p that divide Lucas[(p+1)/2] = A000032[(p+1)/2].
5
3, 7, 23, 43, 47, 67, 83, 103, 107, 127, 163, 167, 223, 227, 263, 283, 307, 347, 367, 383, 443, 463, 467, 487, 503, 523, 547, 563, 587, 607, 643, 647, 683, 727, 743, 787, 823, 827, 863, 883, 887, 907, 947, 967, 983, 1063, 1087, 1103, 1123, 1163, 1187, 1223
OFFSET
1,1
COMMENTS
a(n) is a subset of A002145[n] Primes of form 4n+3, Primes which are also Gaussian primes. A002145[n] is a union of a(n) and A122869[n] Primes p that divide Lucas[(p-1)/2]. Final digit of a(n) is 3 or 7, or Mod[a(n),10] = {3,7}. a(n) = A106865[n+1] Primes of the form 2x^2-2xy+3y^2, with x and y nonnegative, or a(n) are primes congruent to 3,7 modulo 20; Mod[a(n),20] = {3,7}. a(n) is a subset of A003631[n] Primes congruent to {2, 3} mod 5, or primes p that divide Fibonacci(p+1), or Inert rational primes in Q(sqrt 5). a(n) is a subset of A053027[n] Odd primes p with 2 zeros in Fibonacci numbers mod p; or odd primes that divide Lucas numbers of even index. a(n) is a subset of A049098[n] Primes p such that p+1 is divisible by a square.
Is this the same as A216816? - R. J. Mathar, Jul 20 2023
LINKS
Eric Weisstein's World of Mathematics, Lucas Number.
Eric Weisstein's World of Mathematics, Gaussian Prime.
MATHEMATICA
Select[Prime[Range[1000]], IntegerQ[(Fibonacci[(#1+1)/2-1]+Fibonacci[(#1+1)/2+1])/#1]&]
KEYWORD
nonn
AUTHOR
Alexander Adamchuk, Sep 16 2006
STATUS
approved