This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A122871 Expansion of (1 - 2*x - sqrt(1 - 4*x - 8*x^2))/(6*x^2). 1
 1, 2, 7, 26, 106, 452, 1999, 9074, 42046, 198044, 945430, 4564100, 22243060, 109285256, 540738943, 2692103714, 13475973238, 67784600108, 342439638418, 1736727343436, 8839203054604, 45132514680248, 231121351433158 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Series reversion of x/(1+2x+3x^2). Binomial transform is A107264. Counts colored Motzkin paths. Second binomial transform of 1,0,3,0,18,0,... or 3^n*binomial(n) (A005159) with interpolated zeros. Hankel transform is 3^binomial(n+1,2). - Paul Barry, Oct 01 2009 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..200 from Vincenzo Librandi) Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011. FORMULA E.g.f.: exp(2*x)*Bessel_I(1, sqrt(3)*2*x)/(sqrt(3)x). a(n) = Sum_{k=0..floor(n/2)} binomial(n,2*k)*binomial(k)3^k*2^(n-2k). G.f.: 1/(1-2x-3x^2/(1-2x-3x^2/(1-2x-3x^2/(1-2x-3x^2/(1-.... (continued fraction). - Paul Barry, Oct 01 2009 Conjecture: (n+2)*a(n) - 2*(2n+1)*a(n-1) + 8*(1-n)*a(n-2) = 0. - R. J. Mathar, Nov 14 2011 a(n) ~ 2*sqrt(9+5*sqrt(3))*(2+2*sqrt(3))^n/(3*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 19 2012 MATHEMATICA CoefficientList[Series[(1-2*x-Sqrt[1-4*x-8*x^2])/(6*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 19 2012 *) PROG (Sage) def A122871_list(n):  # n>=1     T = [0]*(n+1); R = [1]     for m in (1..n-1):         a, b, c = 1, 0, 0         for k in range(m, -1, -1):             r = a + 2*b + 3*c             if k < m : T[k+2] = u;             a, b, c = T[k-1], a, b             u = r         T[1] = u; R.append(u)     return R A122871_list(23)  # Peter Luschny, Nov 01 2012 (PARI) x='x+O('x^50); Vec((1 - 2*x - sqrt(1 - 4*x - 8*x^2))/(6*x^2)) \\ G. C. Greubel, Mar 19 2017 CROSSREFS Sequence in context: A150559 A150560 A150561 * A150562 A150563 A150564 Adjacent sequences:  A122868 A122869 A122870 * A122872 A122873 A122874 KEYWORD easy,nonn AUTHOR Paul Barry, Sep 16 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 10:55 EDT 2019. Contains 328056 sequences. (Running on oeis4.)