login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242634
G.f. A(x) satisfies A(x) = A(x^2) / (1 - x) + x / (1 - x^2).
1
0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 18, 19, 24, 25, 31, 32, 40, 41, 50, 51, 63, 64, 77, 78, 95, 96, 114, 115, 138, 139, 163, 164, 194, 195, 226, 227, 266, 267, 307, 308, 357, 358, 408, 409, 471, 472, 535, 536, 612, 613, 690, 691, 785, 786, 881, 882
OFFSET
0,4
LINKS
FORMULA
G.f.: x / (1 - x) + Sum_{k>0} x^(3*2^(k-1)) / Product_{j=0..k} (1 - x^(2^j)).
a(n) = a(n-2) + a(floor(n/2)) unless n=1.
a(n) = A088585(n) - A088585(n-1) if n>=1.
a(n) = A088567(n) if n>0.
a(2*n + 1) = a(2*n) + 1 = A088585(n) if n>=0.
EXAMPLE
G.f. = x + x^2 + 2*x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 5*x^7 + 6*x^8 + 7*x^9 + ...
MATHEMATICA
a[ n_] := If[ n < 0, 0, Module[{A = 0}, Do[A = (x + (1 + x) (A /. x -> x^2)) / (1 - x^2), {IntegerLength[ n, 2]}]; SeriesCoefficient[ A, {x, 0, n}]]];
PROG
(PARI) {a(n) = my(A = O(x)); if( n<0, 0, for(k=1, #binary(n), A = (x + (1 + x) * subst(A, x, x^2)) / (1 - x^2)); polcoeff(A, n))};
(PARI) {a(n) = if( n<0, 0, polcoeff( sum(k=0, #binary(n\3), x^(2^k*3 \ 2) / prod(j=0, k, 1 - x^2^j), x * O(x^n)), n))};
CROSSREFS
Sequence in context: A133564 A342558 A017863 * A088567 A029014 A304631
KEYWORD
nonn
AUTHOR
Michael Somos, May 19 2014
STATUS
approved