login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242636
Number of tilings of a 4 X n rectangle using tetrominoes of shapes L, Z, O.
2
1, 0, 3, 12, 23, 94, 289, 842, 2771, 8510, 26411, 83122, 258199, 805914, 2517287, 7846960, 24490017, 76416244, 238387767, 743840496, 2320800841, 7240890040, 22592311143, 70488834118, 219928631821, 686190651342, 2140948175385, 6679872756528, 20841562274863
OFFSET
0,3
LINKS
Wikipedia, Tetromino
Index entries for linear recurrences with constant coefficients, signature (0, 6, 13, 3, -18, -13, -3, 1, -2, -4, 0, -2).
FORMULA
G.f.: (x^6-x^5-2*x^4+x^3+3*x^2-1) / (-2*x^12 -4*x^10 -2*x^9 +x^8 -3*x^7 -13*x^6 -18*x^5 +3*x^4 +13*x^3 +6*x^2 -1).
EXAMPLE
a(3) = 12:
._____. ._____. .___._. ._.___. ._____. ._____.
| .___| |___. | | | | | | | |___. | | .___|
|_|_. | | ._|_| |___| | | |___| | |_| |_| |
| | | | | | | |___| |___| | |___| | | |___|
|___|_| |_|___| |_____| |_____| |_____| |_____|
._____. ._____. ._.___. .___._. ._____. ._____.
| .___| |___. | | |_. | | ._| | | .___| |___. |
|_| ._| |_. |_| |_. | | | | ._| |_| | | | | |_|
|___| | | |___| | |_|_| |_|_| | | ._| | | |_. |
|_____| |_____| |_____| |_____| |_|___| |___|_|.
MAPLE
gf:= (x^6-x^5-2*x^4+x^3+3*x^2-1) / (-2*x^12 -4*x^10 -2*x^9 +x^8 -3*x^7 -13*x^6 -18*x^5 +3*x^4 +13*x^3 +6*x^2 -1):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..40);
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, May 19 2014
STATUS
approved