login
A233139
Number of tilings of a 4 X n rectangle using T and Z tetrominoes.
5
1, 0, 0, 0, 2, 4, 8, 18, 44, 104, 242, 564, 1320, 3090, 7228, 16904, 39538, 92484, 216328, 506002, 1183564, 2768424, 6475506, 15146580, 35428712, 82869778, 193837148, 453396168, 1060519538, 2480615780, 5802302024, 13571915922, 31745486700, 74254506984
OFFSET
0,5
FORMULA
G.f.: (x^3+2*x-1) / (2*x^4+x^3+2*x-1).
a(n) = 2*a(n-1)+a(n-3)+2*a(n-4) for n>3, a(0)=1, a(1)=a(2)=a(3)=0.
EXAMPLE
a(5) = 4:
._____.___. .___._____. ._._____._. ._._____._.
|_. ._| ._| |_. |_. ._| | |_. ._| | | |_. ._| |
| |_|___| | | |___|_| | | ._|_|_. | | ._|_|_. |
| ._| |_. | | ._| |_. | |_| |_. |_| |_| ._| |_|
|_|_____|_| |_|_____|_| |_____|___| |___|_____|.
MAPLE
a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <2|1|0|2>>^n.
<<1, 0, 0, 0>>)[1, 1]:
seq(a(n), n=0..40);
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Dec 04 2013
STATUS
approved