login
A233191
Number of tilings of a 4 X n rectangle using L and T tetrominoes.
7
1, 0, 2, 4, 12, 16, 76, 128, 386, 832, 2368, 5024, 13946, 31680, 82632, 193696, 498174, 1182464, 2993384, 7213648, 18061074, 43832960, 109163384, 266217472, 660116398, 1615451648, 3995295112, 9796774896, 24189684402, 59396496000, 146494223160, 360026507808
OFFSET
0,3
LINKS
Nicolas Bělohoubek and Antonín Slavík, L-Tetromino Tilings and Two-Color Integer Compositions, Univ. Karlova (Czechia, 2025). See p. 10.
Wikipedia, Tetromino
Index entries for linear recurrences with constant coefficients, signature (0, 4, 4, 5, -8, 4, 12, -18, -8, 0, 0, -8).
FORMULA
G.f.: (2*x^6+x^4+2*x^2-1) / (-8*x^12 -8*x^9 -18*x^8 +12*x^7 +4*x^6 -8*x^5 +5*x^4 +4*x^3 +4*x^2 -1).
EXAMPLE
a(3) = 4:
._____. ._____. ._____. ._____.
|_. ._| |_. ._| | |_. | | ._| |
| |_| | | |_| | | ._| | | |_. |
| ._| | | |_. | |_| |_| |_| |_|
|_|___| |___|_| |_____| |_____|.
MAPLE
gf:= (2*x^6+x^4+2*x^2-1) / (-8*x^12 -8*x^9 -18*x^8
+12*x^7 +4*x^6 -8*x^5 +5*x^4 +4*x^3 +4*x^2 -1):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..40);
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Dec 05 2013
STATUS
approved