OFFSET
0,3
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
Nicolas Bělohoubek and Antonín Slavík, L-Tetromino Tilings and Two-Color Integer Compositions, Univ. Karlova (Czechia, 2025). See p. 10.
Wikipedia, Tetromino
Index entries for linear recurrences with constant coefficients, signature (0, 4, 4, 5, -8, 4, 12, -18, -8, 0, 0, -8).
FORMULA
G.f.: (2*x^6+x^4+2*x^2-1) / (-8*x^12 -8*x^9 -18*x^8 +12*x^7 +4*x^6 -8*x^5 +5*x^4 +4*x^3 +4*x^2 -1).
EXAMPLE
a(3) = 4:
._____. ._____. ._____. ._____.
|_. ._| |_. ._| | |_. | | ._| |
| |_| | | |_| | | ._| | | |_. |
| ._| | | |_. | |_| |_| |_| |_|
|_|___| |___|_| |_____| |_____|.
MAPLE
gf:= (2*x^6+x^4+2*x^2-1) / (-8*x^12 -8*x^9 -18*x^8
+12*x^7 +4*x^6 -8*x^5 +5*x^4 +4*x^3 +4*x^2 -1):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..40);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Dec 05 2013
STATUS
approved