login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233194
Prime(k), where k is such that (1 + Sum_{i=1..k} prime(i)^11) / k is an integer.
1
2, 3, 7, 11, 13, 29, 37, 59, 79, 197, 449, 1327, 3931, 197807, 504197, 1697743, 2595641, 6346793, 6986909, 8895379, 55664759, 63142507, 99624919, 129467011, 131784857, 239094833, 494415377, 951747371, 957443177, 9194035843, 52411358381, 62314028797, 69216548567, 220067593093, 3295153668199
OFFSET
1,1
COMMENTS
a(47) > 1005368767096627. - Bruce Garner, Jun 05 2021
EXAMPLE
13 is a term because 13 is the 6th prime and the sum of the first 6 primes^11+1 = 2079498398712 when divided by 6 equals 346583066452 which is an integer.
MATHEMATICA
t = {}; sm = 1; Do[sm = sm + Prime[n]^11; If[Mod[sm, n] == 0, AppendTo[t, Prime[n]]], {n, 100000}]; t (* Derived from A217599 *)
PROG
(PARI) is(n)=if(!isprime(n), return(0)); my(t=primepi(n), s); forprime(p=2, n, s+=Mod(p, t)^11); s==0 \\ Charles R Greathouse IV, Nov 30 2013
CROSSREFS
Cf. A085450 (smallest m > 1 such that m divides Sum_{k=1..m} prime(k)^n).
Sequence in context: A233414 A233863 A371065 * A233040 A233769 A038895
KEYWORD
nonn
AUTHOR
Robert Price, Dec 05 2013
EXTENSIONS
a(35) from Karl-Heinz Hofmann, Mar 07 2021
STATUS
approved