login
A371065
a(1)=2; for n > 1, a(n) is the least prime number p > a(n-1) such that p + 2^(n-1) is a prime number.
1
2, 3, 7, 11, 13, 29, 37, 53, 61, 89, 127, 131, 157, 197, 223, 269, 307, 359, 367, 419, 463, 491, 547, 593, 607, 641, 643, 701, 823, 947, 1213, 1229, 1237, 1319, 1327, 1451, 1723, 2381, 3019, 3299, 3307, 3371, 3847, 4493, 4621, 4931, 5179, 5783, 6043, 6197, 6469
OFFSET
1,1
LINKS
EXAMPLE
For n=5, the preceding term a(4)=11 and 2^(5-1)=16, so a(5) is the least prime p > 11 such that p+16 is a prime too, which is p = 13 = a(5).
From Michael De Vlieger, Mar 10 2024: (Start)
Table of first terms:
n a(n) 2^(n+1) a(n)+2^(n+1)
-------------------------------
1 2 1 3
2 3 2 5
3 7 4 11
4 11 8 19
5 13 16 29
6 29 32 61
7 37 64 101
8 53 128 181
9 61 256 317
10 89 512 601
11 127 1024 1151
12 131 2048 2179
... (End)
MATHEMATICA
a[1] = 2; a[n_] := a[n] = Module[{p = NextPrime[a[n - 1]]}, While[! PrimeQ[p + 2^(n - 1)], p = NextPrime[p]]; p]; Array[a, 50] (* Amiram Eldar, Mar 10 2024 *)
CROSSREFS
Sequence in context: A145032 A233414 A233863 * A233194 A233040 A233769
KEYWORD
nonn
AUTHOR
Ahmad J. Masad, Mar 09 2024
STATUS
approved