login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371066
E.g.f. satisfies A(x) = 1 + x^3/6*exp(x*A(x)).
1
1, 0, 0, 1, 4, 10, 20, 175, 2296, 20244, 134520, 1016565, 13527580, 209970046, 2785823404, 33569936855, 467250784560, 8358652382760, 159820481883696, 2888819281378089, 51781860691882740, 1031576680142770930, 23237341150372569220, 543570375735294712651
OFFSET
0,5
FORMULA
a(n) = n! * Sum_{k=0..floor(n/3)} k^(n-3*k) * binomial(n-3*k+1,k)/( 6^k*(n-3*k+1)*(n-3*k)! ).
MATHEMATICA
nmax = 20; CoefficientList[Series[1 - ProductLog[-E^x*x^4/6]/x, {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Mar 10 2024 *)
PROG
(PARI) a(n) = n!*sum(k=0, n\3, k^(n-3*k)*binomial(n-3*k+1, k)/(6^k*(n-3*k+1)*(n-3*k)!));
CROSSREFS
Cf. A371044.
Sequence in context: A339784 A277970 A229884 * A038422 A009870 A300742
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 09 2024
STATUS
approved