login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229884
Number of 3 up, 3 down permutations of [n].
3
1, 1, 1, 1, 1, 4, 10, 20, 125, 461, 1301, 11210, 55220, 202840, 2223859, 13690951, 61889101, 823947856, 6087160726, 32676403052, 511799407517, 4411241879141, 27418828825961, 493869702112622, 4864805677935368, 34361404413755056, 699648473127100771
OFFSET
0,6
COMMENTS
Limit n->infinity (a(n)/n!)^(1/n) = 0.4494840644898... . - Vaclav Kotesovec, Sep 06 2014
LINKS
EXAMPLE
a(4) = 1: 1234.
a(5) = 4: 12354, 12453, 13452, 23451.
a(6) = 10: 123654, 124653, 125643, 134652, 135642, 145632, 234651, 235641, 245631, 345621.
a(7) = 20: 1237654, 1247653, 1257643, 1267543, 1347652, 1357642, 1367542, 1457632, 1467532, 1567432, 2347651, 2357641, 2367541, 2457631, 2467531, 2567431, 3457621, 3467521, 3567421, 4567321.
MAPLE
b:= proc(u, o, t) option remember; `if`(u+o=0, 1, add(`if`(t=3,
b(o-j, u+j-1, 1), b(u+j-1, o-j, t+1)), j=1..o))
end:
a:= n-> b(0, n, 0):
seq(a(n), n=0..30);
MATHEMATICA
b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, Sum[If[t == 3, b[o - j, u + j - 1, 1], b[u + j - 1, o - j, t + 1]], {j, 1, o}]];
a[n_] := b[0, n, 0];
a /@ Range[0, 30] (* Jean-François Alcover, Dec 21 2020, after Alois P. Heinz *)
CROSSREFS
Column k=3 of A229892.
Cf. A005982.
Sequence in context: A306158 A339784 A277970 * A371066 A038422 A009870
KEYWORD
nonn,eigen
AUTHOR
Alois P. Heinz, Oct 02 2013
STATUS
approved