login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 3 up, 3 down permutations of [n].
3

%I #20 Dec 21 2020 07:15:48

%S 1,1,1,1,1,4,10,20,125,461,1301,11210,55220,202840,2223859,13690951,

%T 61889101,823947856,6087160726,32676403052,511799407517,4411241879141,

%U 27418828825961,493869702112622,4864805677935368,34361404413755056,699648473127100771

%N Number of 3 up, 3 down permutations of [n].

%C Limit n->infinity (a(n)/n!)^(1/n) = 0.4494840644898... . - _Vaclav Kotesovec_, Sep 06 2014

%H Alois P. Heinz, <a href="/A229884/b229884.txt">Table of n, a(n) for n = 0..200</a>

%e a(4) = 1: 1234.

%e a(5) = 4: 12354, 12453, 13452, 23451.

%e a(6) = 10: 123654, 124653, 125643, 134652, 135642, 145632, 234651, 235641, 245631, 345621.

%e a(7) = 20: 1237654, 1247653, 1257643, 1267543, 1347652, 1357642, 1367542, 1457632, 1467532, 1567432, 2347651, 2357641, 2367541, 2457631, 2467531, 2567431, 3457621, 3467521, 3567421, 4567321.

%p b:= proc(u, o, t) option remember; `if`(u+o=0, 1, add(`if`(t=3,

%p b(o-j, u+j-1, 1), b(u+j-1, o-j, t+1)), j=1..o))

%p end:

%p a:= n-> b(0, n, 0):

%p seq(a(n), n=0..30);

%t b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, Sum[If[t == 3, b[o - j, u + j - 1, 1], b[u + j - 1, o - j, t + 1]], {j, 1, o}]];

%t a[n_] := b[0, n, 0];

%t a /@ Range[0, 30] (* _Jean-François Alcover_, Dec 21 2020, after _Alois P. Heinz_ *)

%Y Column k=3 of A229892.

%Y Cf. A005982.

%K nonn,eigen

%O 0,6

%A _Alois P. Heinz_, Oct 02 2013