login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229886
Number of 5 up, 5 down permutations of [n].
2
1, 1, 1, 1, 1, 1, 1, 6, 21, 56, 126, 252, 2562, 14442, 59487, 199627, 578005, 8330800, 65056960, 363823800, 1628423880, 6190034016, 115452938151, 1152005977431, 8137667253101, 45527993728141, 214265281290061, 4904624749585886, 59578069604921361
OFFSET
0,8
COMMENTS
Limit n->infinity (a(n)/n!)^(1/n) = 0.337596001995... . - Vaclav Kotesovec, Sep 06 2014
LINKS
EXAMPLE
a(6) = 1: 123456.
a(7) = 6: 1234576, 1234675, 1235674, 1245673, 1345672, 2345671.
a(8) = 21: 12345876, 12346875, 12347865, 12356874, 12357864, 12367854, 12456873, 12457863, 12467853, 12567843, 13456872, 13457862, 13467852, 13567842, 14567832, 23456871, 23457861, 23467851, 23567841, 24567831, 34567821.
MAPLE
b:= proc(u, o, t) option remember; `if`(u+o=0, 1, add(`if`(t=5,
b(o-j, u+j-1, 1), b(u+j-1, o-j, t+1)), j=1..o))
end:
a:= n-> b(0, n, 0):
seq(a(n), n=0..35);
MATHEMATICA
b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, Sum[If[t == 5, b[o - j, u + j - 1, 1], b[u + j - 1, o - j, t + 1]], {j, 1, o}]];
a[n_] := b[0, n, 0];
a /@ Range[0, 35] (* Jean-François Alcover, Dec 22 2020, after Alois P. Heinz *)
CROSSREFS
Column k=5 of A229892.
Sequence in context: A375165 A019500 A100356 * A243740 A369794 A137361
KEYWORD
nonn,eigen
AUTHOR
Alois P. Heinz, Oct 02 2013
STATUS
approved