login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A019500
Number of 6-ary search trees on n keys.
2
1, 1, 1, 1, 1, 1, 6, 21, 56, 126, 252, 492, 1062, 2667, 7252, 19509, 49824, 121019, 286974, 687384, 1702308, 4357383, 11322408, 29307458, 74897808, 189349041, 477491356, 1211349276, 3103673406, 8017385416, 20780391882, 53812468392, 138999941172, 358502419242
OFFSET
0,7
LINKS
J. A. Fill and R. P. Dobrow, The number of m-ary search trees on n keys, Combin. Probab. Comput. 6 (1997), 435-453.
FORMULA
a(n) ~ c * d^n / n^(3/2), where d = 2.705312740243..., c = 0.3835479397... . - Vaclav Kotesovec, Sep 06 2014
MAPLE
A:= proc(n) option remember; if n=0 then 1 else convert(series(
add(x^i, i=0..4)+ x^5*A(n-1)^6, x=0, n+1), polynom) fi
end:
a:= n-> coeff(A(n), x, n):
seq(a(n), n=0..40); # Alois P. Heinz, Aug 22 2008
MATHEMATICA
A[n_] := A[n] = If[n==0, 1, Series[Sum[x^i, {i, 0, 4}] + x^5*A[n-1]^6, {x, 0, n+1}] // Normal]; a[n_] := Coefficient[A[n], x, n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 19 2016, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A373937 A275936 A375165 * A100356 A229886 A243740
KEYWORD
nonn
AUTHOR
James Fill (jimfill(AT)jhu.edu)
EXTENSIONS
More terms from Alois P. Heinz, Aug 22 2008
STATUS
approved