login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137361
a(n) = Sum_{k=0..n/2} k*binomial(n-2*k, 3*k+2).
8
0, 0, 0, 0, 0, 0, 0, 1, 6, 21, 56, 126, 254, 480, 882, 1617, 2992, 5580, 10410, 19292, 35400, 64343, 116128, 208701, 374226, 670095, 1198164, 2138423, 3808148, 6766089, 11996042, 21229790, 37513896, 66202347, 116692472, 205458357, 361349662, 634845141, 1114205988
OFFSET
0,9
REFERENCES
D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.4.
LINKS
FORMULA
G.f.: x^7/(x^5 + x^3 - 3*x^2 + 3*x - 1)^2. - Alois P. Heinz, Oct 23 2008
MAPLE
a:= n-> (Matrix(10, (i, j)-> if i=j-1 then 1 elif j=1 then [6, -15, 20, -15, 8, -7, 6, -2, 0, -1][i] else 0 fi)^n)[1, 8]:
seq(a(n), n=0..50); # Alois P. Heinz, Oct 23 2008
MATHEMATICA
t[i_, j_] := If[i == j-1, 1, If[j == 1, {6, -15, 20, -15, 8, -7, 6, -2, 0, -1}[[i]] , 0]]; M = Array[t, {10, 10}]; a[n_] := MatrixPower[M, n][[1, 8]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Feb 13 2015, after Alois P. Heinz *)
PROG
(Magma) [&+[k*Binomial(n-2*k, 3*k+2): k in [0..(n div 2)]]: n in [0..40]]; // Bruno Berselli, Feb 13 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Don Knuth, Apr 11 2008
STATUS
approved