login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137358
a(n) = Sum_{k <= n/2 } binomial(n-2k, 3k+2).
5
0, 0, 1, 3, 6, 10, 15, 22, 34, 57, 101, 181, 319, 549, 928, 1557, 2617, 4427, 7536, 12872, 21992, 37513, 63862, 108575, 184524, 313701, 533619, 908140, 1545839, 2631240, 4478044, 7619870, 12964858, 22058847, 37533077, 63865592, 108676262, 184929945, 314685488
OFFSET
0,4
REFERENCES
D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.4.
FORMULA
a(0)=0, a(1)=0, a(2)=1, a(3)=3, a(4)=6, a(n)=3*a(n-1)-3*a(n-2)+ a(n-3)+ a(n-5). - Harvey P. Dale, Nov 06 2012
G.f.: -x^2/(x^5+x^3-3*x^2+3*x-1). - Colin Barker, Jan 23 2013
MATHEMATICA
Table[Sum[Binomial[n-2k, 3k+2], {k, 0, Floor[n/2]}], {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1, 0, 1}, {0, 0, 1, 3, 6}, 50] (* Harvey P. Dale, Nov 06 2012 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Don Knuth, Apr 11 2008
STATUS
approved