login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136444
a(n) = Sum_{k=0..n} k*binomial(n-k, 2*k).
6
0, 0, 0, 1, 3, 6, 12, 25, 51, 101, 197, 381, 731, 1392, 2634, 4958, 9290, 17337, 32239, 59760, 110460, 203651, 374593, 687567, 1259597, 2303449, 4205493, 7666560, 13956532, 25374108, 46076436, 83575025, 151431099, 274108826, 495708364, 895670733, 1617003823, 2916984121
OFFSET
0,5
COMMENTS
Consider four related sequences: A_n = sum C(n-k, 2k), B_n = sum C(n-k, 2k+1), A^*_n = sum k*C(n-k, 2k), B^*_n = sum k*(C(n-k, 2k+1).
Sequence A_n, with generating function (1-z)/p(z) where p(z) = 1 - 2z + z^2 - z^3, is A005251.
Sequence B_n, with generating function z/p(z), is A005314.
Sequence A^*_n is the present sequence.
Sequence B^*_n is A118430, but shifted one place so that the generating function is z^4/p(z)^2 instead of z^3/p(z)^2.
These sequences have many interrelations; for example,
B_{n+1} - B_n = A_n; B^*_{n+1} - B^*_n = A^*_n;
A_{n+1} - A_n = B_{n-1}; A^*_{n+1} - A^*_n = B^*_{n-1} + B_{n-1}.
REFERENCES
D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.4.
LINKS
T. Mansour and M. Shattuck, Counting Peaks and Valleys in a Partition of a Set, J. Int. Seq. 13 (2010), #10.6.8, partitions of [n] with 2 blocks with 1 peak.
FORMULA
G.f.: x^3*(1-x)/(1-2*x+x^2-x^3)^2.
a(n) ~ c * d^n * n, where d = A109134 = 1.75487766624669276... is the root of the equation d*(d-1)^2 = 1, c = 0.072838349685011... is the root of the equation 529*c^3 - 207*c^2 + 26*c = 1. - Vaclav Kotesovec, May 25 2015
MAPLE
a:= n-> (Matrix([[0, 0, 1, 1, -3, -5]]). Matrix(6, (i, j)-> if (i=j-1) then 1 elif j=1 then [4, -6, 6, -5, 2, -1][i] else 0 fi)^n)[1, 1]: seq(a(n), n=0..37); # Alois P. Heinz, Aug 13 2008
MATHEMATICA
a[n_] := ({0, 0, 1, 1, -3, -5} . MatrixPower[ Table[If[i == j-1, 1, If[j == 1, {4, -6, 6, -5, 2, -1}[[i]], 0]], {i, 6}, {j, 6}], n])[[1]]; Table[a[n], {n, 0, 37}] (* Jean-François Alcover, Feb 13 2015, after Alois P. Heinz *)
CoefficientList[Series[x^3 (1 - x)/(1 - 2 x + x^2 - x^3)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 15 2015 *)
PROG
(Magma) [&+[k*Binomial(n-k, 2*k): k in [0..n]]: n in [0..40]]; // Bruno Berselli, Feb 13 2015
KEYWORD
nonn,easy
AUTHOR
Don Knuth, Apr 04 2008
STATUS
approved