login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137360
a(n) = Sum_{k <= n/2 } k*binomial(n-2k, 3k+1).
4
0, 0, 0, 0, 0, 0, 1, 5, 15, 35, 70, 128, 226, 402, 735, 1375, 2588, 4830, 8882, 16108, 28943, 51785, 92573, 165525, 295869, 528069, 940259, 1669725, 2957941, 5229953, 9233748, 16284106, 28688451, 50490125, 88765885, 155891305, 273495479, 479360847, 839451764
OFFSET
0,8
REFERENCES
D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.4.
FORMULA
G.f.: x^6*(1-x)/(x^5+x^3-3*x^2+3*x-1)^2. - Alois P. Heinz, Oct 23 2008
MAPLE
a:= n-> (Matrix([[35, 15, 5, 1, 0$6]]). Matrix (10, (i, j)-> if i=j-1 then 1 elif j=1 then [6, -15, 20, -15, 8, -7, 6, -2, 0, -1][i] else 0 fi)^n)[1, 10]: seq (a(n), n=0..50); # Alois P. Heinz, Oct 23 2008
MATHEMATICA
Table[Sum[k Binomial[n-2k, 3k+1], {k, n/2}], {n, 0, 40}] (* or *) LinearRecurrence[ {6, -15, 20, -15, 8, -7, 6, -2, 0, -1}, {0, 0, 0, 0, 0, 0, 1, 5, 15, 35}, 40] (* Harvey P. Dale, May 31 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Don Knuth, Apr 11 2008
STATUS
approved