OFFSET
0,2
LINKS
Paul D. Hanna, Table of n, a(n) for n = 0..1000
FORMULA
G.f.: A(x) = Product_{n>=0} 1/(1 - x^(5^n))^(4*n+5).
G.f. satisfies: A(x) = (1-x^5)/(1-x)^5 * A(x^5)^2/A(x^25).
G.f. satisfies: A(x) = A(x^5)*G(x) where G(x) = G(x^5)*(1-x^5)/(1-x)^5 is the g.f. of A195760.
Let the QUINTISECTIONS of A(x) be defined by:
A(x) = Q0(x^5) + x*Q1(x^5) + x^2*Q3(x^5) + x^3*Q3(x^5) + x^4*Q4(x^5),
then
_ Q0(x) = (1 + 121*x + 381*x^2 + 121*x^3 + x^4)/R(x)
_ Q1(x) = 5*(1 + 37*x + 73*x^2 + 14*x^3)/R(x)
_ Q2(x) = 5*(3 + 51*x + 64*x^2 + 7*x^3)/R(x)
_ Q3(x) = 5*(7 + 64*x + 51*x^2 + 3*x^3)/R(x)
_ Q4(x) = 5*(14 + 73*x + 37*x^2 + 1*x^3)/R(x)
where R(x) = (1-x)^5*Product_{n>=0} (1 - x^(5^n))^(4*n+9).
Further, the quintisections are related by:
_ Q2(x)*Q3(x) - Q1(x)*Q4(x) = 175*(1-x)^6/R(x)^2.
EXAMPLE
G.f.: A(x) = 1 + 5*x + 15*x^2 + 35*x^3 + 70*x^4 + 135*x^5 + 255*x^6 +...
log(A(x)) = 5*x + 5*x^2/2 + 5*x^3/3 + 5*x^4/4 + 50*x^5/5 + 5*x^6/6 + 5*x^7/7 + 5*x^8/8 + 5*x^9/9 + 50*x^10/10 +...
The coefficients in the QUINTISECTIONS of g.f. A(x) begin:
Q0: [1, 135, 2180, 18720, 111840, 522640, 2040260, 6941780, ...];
Q1: [5, 255, 3480, 27405, 154805, 694955, 2631955, 8746180, ...];
Q2: [15, 465, 5465, 39690, 212590, 918490, 3379065, 10977565, ...];
Q3: [35, 810, 8410, 56785, 289485, 1206310, 4317210, 13725310, ...];
Q4: [70, 1345, 12645, 80120, 390495, 1573495, 5487145, 17090945, ...].
PROG
(PARI) {a(n)=local(N=ceil(log(n+6)/log(5))); polcoeff(1/prod(k=0, N, (1-x^(5^k) +x*O(x^n))^(4*k+5)), n)}
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, valuation(5*m, 5)*5^valuation(5*m, 5)*x^m/m)+x*O(x^n)), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 23 2011
STATUS
approved