login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=0..n/2} k*binomial(n-2*k, 3*k+2).
8

%I #18 Sep 08 2022 08:45:32

%S 0,0,0,0,0,0,0,1,6,21,56,126,254,480,882,1617,2992,5580,10410,19292,

%T 35400,64343,116128,208701,374226,670095,1198164,2138423,3808148,

%U 6766089,11996042,21229790,37513896,66202347,116692472,205458357,361349662,634845141,1114205988

%N a(n) = Sum_{k=0..n/2} k*binomial(n-2*k, 3*k+2).

%D D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.4.

%H Alois P. Heinz, <a href="/A137361/b137361.txt">Table of n, a(n) for n = 0..1000</a>

%F G.f.: x^7/(x^5 + x^3 - 3*x^2 + 3*x - 1)^2. - _Alois P. Heinz_, Oct 23 2008

%p a:= n-> (Matrix(10, (i,j)-> if i=j-1 then 1 elif j=1 then [6, -15, 20, -15, 8, -7, 6, -2, 0, -1][i] else 0 fi)^n)[1,8]:

%p seq(a(n), n=0..50); # _Alois P. Heinz_, Oct 23 2008

%t t[i_, j_] := If[i == j-1, 1, If[j == 1, {6, -15, 20, -15, 8, -7, 6, -2, 0, -1}[[i]] , 0]]; M = Array[t, {10, 10}]; a[n_] := MatrixPower[M, n][[1, 8]]; Table[a[n], {n, 0, 50}] (* _Jean-François Alcover_, Feb 13 2015, after _Alois P. Heinz_ *)

%o (Magma) [&+[k*Binomial(n-2*k, 3*k+2): k in [0..(n div 2)]]: n in [0..40]]; // _Bruno Berselli_, Feb 13 2015

%Y Cf. A137356-A137360, A136444.

%K nonn

%O 0,9

%A _Don Knuth_, Apr 11 2008