login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229885
Number of 4 up, 4 down permutations of [n].
3
1, 1, 1, 1, 1, 1, 5, 15, 35, 70, 574, 2674, 9274, 26599, 305747, 1944033, 8995805, 33757360, 498851248, 4017418768, 23236611280, 107709888805, 1945409895065, 18965460022971, 131635127294783, 726401013530416, 15505381392117616, 177447751441161616
OFFSET
0,7
COMMENTS
Limit n->infinity (a(n)/n!)^(1/n) = 0.38605986196... . - Vaclav Kotesovec, Sep 06 2014
LINKS
EXAMPLE
a(5) = 1: 12345.
a(6) = 5: 123465, 123564, 124563, 134562, 234561.
a(7) = 15: 1234765, 1235764, 1236754, 1245763, 1246753, 1256743, 1345762, 1346752, 1356742, 1456732, 2345761, 2346751, 2356741, 2456731, 3456721.
MAPLE
b:= proc(u, o, t) option remember; `if`(u+o=0, 1, add(`if`(t=4,
b(o-j, u+j-1, 1), b(u+j-1, o-j, t+1)), j=1..o))
end:
a:= n-> b(0, n, 0):
seq(a(n), n=0..30);
MATHEMATICA
b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, Sum[If[t == 4, b[o - j, u + j - 1, 1], b[u + j - 1, o - j, t + 1]], {j, 1, o}]];
a[n_] := b[0, n, 0];
a /@ Range[0, 30] (* Jean-François Alcover, Dec 21 2020, after Alois P. Heinz *)
CROSSREFS
Column k=4 of A229892.
Cf. A005983.
Sequence in context: A100355 A048032 A019499 * A363618 A363608 A243739
KEYWORD
nonn,eigen
AUTHOR
Alois P. Heinz, Oct 02 2013
STATUS
approved