|
|
A233414
|
|
Prime(n), where n is such that (1 + Sum_{i=1..n} prime(i)^15) / n is an integer.
|
|
1
|
|
|
2, 3, 7, 11, 13, 29, 37, 43, 79, 373, 2719, 3767, 4583, 6653, 34919, 83737, 95383, 493523, 741053, 1433689, 1629623, 2254757, 2686819, 2801221, 7283587, 12288799, 49986019, 120365039, 1280220301, 1388048693, 2336739481, 3390500677, 5139223693, 14729858701
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
|
|
LINKS
|
|
|
EXAMPLE
|
a(3) = 7, because 7 is the 4th prime and the sum of the first 4 primes^15+1 = 4778093469744 when divided by 4 equals 1194523367436 which is an integer.
|
|
MATHEMATICA
|
t = {}; sm = 1; Do[sm = sm + Prime[n]^15; If[Mod[sm, n] == 0, AppendTo[t, Prime[n]]], {n, 100000}]; t (* Derived from A217599 *)
nn=7000000; With[{pr15=Accumulate[Prime[Range[nn]]^15]+1}, Prime[ #]&/@ Select[ Range[nn], Divisible[pr15[[#]], #]&]] (* This program will generate the first 28 terms of the sequence. To generate an additional 6 terms terms, nn would have to equal 659 million, and the program would take a long time to run. *) (* Harvey P. Dale, May 01 2014 *)
|
|
PROG
|
(PARI) is(n)=if(!isprime(n), return(0)); my(t=primepi(n), s); forprime(p=2, n, s+=Mod(p, t)^15); s==0 \\ Charles R Greathouse IV, Nov 30 2013
|
|
CROSSREFS
|
Cf. A085450 (smallest m > 1 such that m divides Sum_{k=1..m} prime(k)^n).
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|