|
|
A233413
|
|
Numbers k such that k divides 1 + Sum_{j=1..k} prime(j)^15.
|
|
1
|
|
|
1, 2, 4, 5, 6, 10, 12, 14, 22, 74, 397, 524, 620, 857, 3727, 8171, 9194, 41032, 59604, 109471, 123231, 166394, 195736, 203440, 494620, 805738, 3000362, 6861264, 64286003, 69417562, 113888084, 162292604, 241184820, 658646484, 864667379, 1027008032, 4023976348
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
|
|
LINKS
|
|
|
EXAMPLE
|
a(6)=10 because 1 plus the sum of the first 10 primes^15 is 8913922901063237276800 which is divisible by 10.
|
|
MATHEMATICA
|
p = 2; k = 0; s = 1; lst = {}; While[k < 40000000000, s = s + p^15; If[Mod[s, ++k] == 0, AppendTo[lst, k]; Print[{k, p}]]; p = NextPrime@ p] (* derived from A128169 *)
|
|
CROSSREFS
|
Cf. A085450 (smallest m > 1 such that m divides Sum_{k=1..m} prime(k)^n).
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|