login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A110034
Row sums of a characteristic triangle for the Fibonacci numbers.
4
1, 0, -1, -4, -11, -30, -79, -208, -545, -1428, -3739, -9790, -25631, -67104, -175681, -459940, -1204139, -3152478, -8253295, -21607408, -56568929, -148099380, -387729211, -1015088254, -2657535551, -6957518400, -18215019649, -47687540548, -124847601995, -326855265438
OFFSET
0,4
COMMENTS
Rows sums of A110033.
Conjecture: |a(n)| = Sum_{k=1..n-1} A061646(k). - J. M. Bergot, Jun 10 2013
FORMULA
G.f.: (1-3x-x^2+2x^3)/((1-x^2)(1-3x+x^2)).
a(n) = a(n-1)-3a(n-3)+a(n-4).
a(n) = Sum_{k=0..n-1} F(k)*F(k+1) - F(2n) + 1.
a(n) = (5+(-1)^n-4*(-1)^n*A098149(n))/10. [R. J. Mathar, Jul 22 2010]
MATHEMATICA
CoefficientList[Series[(-2*z^3 + z^2 + 3*z - 1)/(z^4 - 3*z^3 + 3*z - 1), {z, 0, 100}], z] (* Vladimir Joseph Stephan Orlovsky, Jul 17 2011 *)
CROSSREFS
Sequence in context: A026583 A339739 A291238 * A340824 A114726 A128098
KEYWORD
easy,sign
AUTHOR
Paul Barry, Jul 08 2005
STATUS
approved