login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Row sums of a characteristic triangle for the Fibonacci numbers.
4

%I #25 May 09 2024 09:08:19

%S 1,0,-1,-4,-11,-30,-79,-208,-545,-1428,-3739,-9790,-25631,-67104,

%T -175681,-459940,-1204139,-3152478,-8253295,-21607408,-56568929,

%U -148099380,-387729211,-1015088254,-2657535551,-6957518400,-18215019649,-47687540548,-124847601995,-326855265438

%N Row sums of a characteristic triangle for the Fibonacci numbers.

%C Rows sums of A110033.

%C Conjecture: |a(n)| = Sum_{k=1..n-1} A061646(k). - _J. M. Bergot_, Jun 10 2013

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (3,0,-3,1).

%F G.f.: (1-3x-x^2+2x^3)/((1-x^2)(1-3x+x^2)).

%F a(n) = a(n-1)-3a(n-3)+a(n-4).

%F a(n) = Sum_{k=0..n-1} F(k)*F(k+1) - F(2n) + 1.

%F a(n) = (5+(-1)^n-4*(-1)^n*A098149(n))/10. [_R. J. Mathar_, Jul 22 2010]

%t CoefficientList[Series[(-2*z^3 + z^2 + 3*z - 1)/(z^4 - 3*z^3 + 3*z - 1), {z, 0, 100}], z] (* _Vladimir Joseph Stephan Orlovsky_, Jul 17 2011 *)

%Y Cf. A061646, A110033.

%K easy,sign

%O 0,4

%A _Paul Barry_, Jul 08 2005