login
A086937
Number of distinct zeros of x^2-x-1 mod prime(n).
7
0, 0, 1, 0, 2, 0, 0, 2, 0, 2, 2, 0, 2, 0, 0, 0, 2, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 0, 2, 0, 0, 2, 0, 2, 2, 2, 0, 0, 0, 0, 2, 2, 2, 0, 0, 2, 2, 0, 0, 2, 0, 2, 2, 2, 0, 0, 2, 2, 0, 2, 0, 0, 0, 2, 0, 0, 2, 0, 0, 2, 0, 2, 0, 0, 2, 0, 2, 0, 2, 2, 2, 2, 2, 0, 2, 0, 2, 0, 2, 0, 0, 2, 0, 2, 2, 0, 2, 2, 0, 2, 0, 0, 0, 2, 2
OFFSET
1,5
COMMENTS
For the prime modulus 5, the polynomial can be factored as (x+2)^2, showing that x=3 is a zero of multiplicity 2. The discriminant of the polynomial is 5. Also note how this sequence is related to the Fibonacci sequence A051830; for n>3, a(n) = 2*A051830(n). - T. D. Noe, Aug 13 2004
LINKS
J.-P. Serre, On a theorem of Jordan, Bull. Amer. Math. Soc., 40 (No. 4, 2003), 429-440, see p. 433.
FORMULA
If p = prime(n), a(n) = A080891(p) + 1.
MATHEMATICA
Table[p=Prime[n]; cnt=0; Do[If[Mod[x^2-x-1, p]==0, cnt++ ], {x, 0, p-1}]; cnt, {n, 105}] (* T. D. Noe, Sep 24 2003 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Sep 23 2003
EXTENSIONS
Corrected and extended by T. D. Noe, Sep 24 2003
STATUS
approved