login
A213024
The number of solutions to x^2 + y^2 + 2*z^2 = n in positive integers x,y,z.
3
0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 2, 2, 0, 2, 1, 0, 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 6, 0, 0, 4, 0, 2, 4, 2, 3, 4, 2, 2, 2, 0, 6, 4, 2, 4, 0, 4, 2, 4, 2, 0, 8, 2, 2, 6, 0, 2, 8, 2, 6, 4, 0, 6, 1, 0, 4, 6, 4, 4, 6, 2, 2, 6, 2, 4, 8, 4, 0, 4, 2, 2, 10, 4, 6, 4, 2, 6, 2, 2, 8, 6, 6, 6, 0, 2, 0, 8, 6, 2, 9
OFFSET
0,8
FORMULA
a(n) = ( A014455(n) - 2*A033715(n) - A004018(n) + A000122(n/2) + 2*A000122(n) - A000007(n) )/8.
G.f.: T(x)^2 * T(x^2) where T(x) = sum(k>=1, x^(k^2)). [Joerg Arndt, Oct 01 2012]
PROG
(PARI)
N=166; x='x+O('x^N);
T(x)=sum(k=1, 1+sqrtint(N), x^(k*k) );
gf=T(x)^2 * T(x^2);
v=Vec('a0 + gf ); v[1]=0; v
/* Joerg Arndt, Oct 01 2012 */
CROSSREFS
Sequence in context: A308046 A289323 A086937 * A291289 A095759 A260309
KEYWORD
nonn
AUTHOR
Max Alekseyev, Sep 29 2012
STATUS
approved