login
A156384
The number of solutions to x^2 + y^2 + 2*z^2 = n in nonnegative integers x,y,z.
3
1, 2, 2, 2, 3, 2, 2, 2, 2, 4, 4, 2, 4, 4, 0, 2, 3, 4, 6, 4, 4, 2, 4, 2, 2, 6, 4, 6, 6, 2, 0, 4, 2, 6, 8, 2, 7, 6, 4, 2, 4, 4, 6, 6, 4, 6, 0, 4, 4, 6, 6, 4, 10, 4, 6, 6, 0, 6, 10, 4, 6, 6, 0, 6, 3, 4, 8, 8, 8, 4, 6, 2, 6, 10, 4, 6, 10, 4, 0, 4, 4, 8, 14, 6, 6, 8, 4, 6, 4, 6, 10, 6, 6, 6, 0, 2, 2, 12, 8, 8
OFFSET
0,2
COMMENTS
Also, the number of 4X4 matrices composed of squares of integers, symmetric under 90 degree rotation, with all rows summing to n. Such matrices have the form:
z^2 x^2 y^2 z^2
y^2 z^2 z^2 x^2
x^2 z^2 z^2 y^2
z^2 y^2 x^2 z^2
with x^2 + y^2 + 2*z^2 = n.
FORMULA
a(n) = ( A014455(n) + 2*A033715(n) + A004018(n) + A000122(n/2) + 2*A000122(n) + A000007(n) )/8. - Max Alekseyev, Sep 29 2012
G.f.: (1 + theta_3(q))^2*(1 + theta_3(q^2))/8, where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Aug 01 2018
EXAMPLE
All matrices for n=9:
...0.0.9.0...0.9.0.0...4.0.1.4...4.1.0.4
...9.0.0.0...0.0.0.9...1.4.4.0...0.4.4.1
...0.0.0.9...9.0.0.0...0.4.4.1...1.4.4.0
...0.9.0.0...0.0.9.0...4.1.0.4...4.0.1.4
CROSSREFS
Sequence in context: A349956 A104564 A160764 * A306249 A064656 A270776
KEYWORD
nonn
AUTHOR
R. H. Hardin Feb 09 2009
EXTENSIONS
More general definition from Max Alekseyev, Sep 29 2012
STATUS
approved