login
A306249
Number of ways to write n as x*(2x-1) + y*(3y-1) + z*(4z-1) + w*(5w-1), where x,y,z are nonnegative integers and w is 0 or 1.
2
1, 1, 1, 2, 2, 2, 3, 2, 2, 2, 3, 2, 1, 2, 3, 4, 2, 3, 3, 3, 4, 2, 2, 1, 4, 3, 1, 1, 5, 4, 3, 3, 3, 4, 4, 3, 1, 3, 3, 5, 1, 2, 4, 5, 4, 4, 2, 3, 7, 3, 3, 2, 5, 3, 3, 2, 2, 3, 4, 5, 1, 4, 6, 6, 2, 3, 5, 3, 3, 3, 5, 4, 5, 5, 3, 6, 6, 4, 3, 4, 5, 2, 3, 4, 4, 5, 2, 2, 5, 6, 6, 1, 5, 3, 6, 2, 4, 3, 4, 4, 2
OFFSET
0,4
COMMENTS
Conjecture: a(n) > 0 for any nonnegative integer n.
This has been verified for n up to 10^6. By Theorem 1.2 of the linked 2017 paper of the author, any nonnegative integer can be written as x*(2x-1) + y*(3y-1) + z*(4z-1) with x,y,z integers.
We have some other similar conjectures. For example, we conjecture that each n = 0,1,2,... can be written as x*(3x-1)/2 + y*(5y-1)/2 + z*(7z-1)/2 + w*(9w-1)/2) (or x*(x-1) + y*(2y-1) + z*(3z-1) + w*(4w-1)) with x,y,z,w nonnegative integers.
LINKS
Zhi-Wei Sun, A result similar to Lagrange's theorem, J. Number Theory 162(2016), 190-211.
Zhi-Wei Sun, On x(ax+1)+y(by+1)+z(cz+1) and x(ax+b)+y(ay+c)+z(az+d), J. Number Theory 171(2017), 275-283.
EXAMPLE
a(1) = 1 with 1 = 1*(2*1-1) + 0*(3*0-1) + 0*(4*0-1) + 0*(5*0-1).
a(2) = 1 with 2 = 0*(2*0-1) + 1*(3*1-1) + 0*(4*0-1) + 0*(5*0-1).
a(12) = 1 with 12 = 2*(2*2-1) + 1*(3*1-1) + 0*(4*0-1) + 1*(5*1-1).
a(26) = 1 with 26 = 2*(2*2-1) + 1*(3*1-1) + 2*(4*2-1) + 1*(5*1-1).
a(220) = 1 with 220 = 6*(2*6-1) + 7*(3*7-1) + 2*(4*2-1) + 0*(5*0-1).
a(561) = 1 with 561 = 17*(2*17-1) + 0*(3*0-1) + 0*(4*0-1) + 0*(5*0-1).
a(1356) = 1 with 1356 = 23*(2*23-1) + 1*(3*1-1) + 9*(4*9-1) + 1*(5*1-1).
MATHEMATICA
HexQ[n_]:=HexQ[n]=IntegerQ[Sqrt[8n+1]]&&(n==0||Mod[Sqrt[8n+1]+1, 4]==0);
tab={}; Do[r=0; Do[If[HexQ[n-x(5x-1)-y(4y-1)-z(3z-1)], r=r+1], {x, 0, Min[1, (Sqrt[20n+1]+1)/10]}, {y, 0, (Sqrt[16(n-x(5x-1))+1]+1)/8}, {z, 0, (Sqrt[12(n-x(5x-1)-y(4y-1))+1]+1)/6}]; tab=Append[tab, r], {n, 0, 100}]; Print[tab]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jan 31 2019
STATUS
approved