login
A056608
Least prime factor of the n-th composite number.
39
2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 5, 2, 3, 2, 2, 2, 3, 2, 5, 2, 2, 3, 2, 2, 2, 3, 2, 2, 7, 2, 3, 2, 2, 5, 2, 3, 2, 2, 2, 3, 2, 5, 2, 2, 3, 2, 2, 2, 3, 2, 7, 2, 2, 3, 2, 2, 5, 2, 3, 2, 2, 7, 2, 3, 2, 5, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 5, 2, 3, 2, 7, 2, 11, 2, 3, 2, 5, 2, 2, 3, 2, 2, 7, 2, 3, 2, 2, 2
OFFSET
1,1
COMMENTS
Record values are seen when n = A120389(m). Conjecture: at each new record the count of the prior record follows A247509. Records seen are 2, 3, 5, 7, 11, ... and when 3, 5, 7, 11 are first seen, there have been 3, 3, 2, and 4 occurrences of 2, 3, 5, and 7. These are A247509(1) through A247509(4). Thus, the count for prime(60) would be A247509(60). - Bill McEachen, Jun 17 2024
LINKS
FORMULA
a(n) = A020639(A002808(n)) = A000040(A118663(n)). - M. F. Hasler, Apr 03 2012
MATHEMATICA
DeleteCases[Table[FactorInteger[n][[1, 1]] * Boole[Not[PrimeQ[n]]], {n, 2, 100}], 0] (* Alonso del Arte, Aug 21 2014 *)
FactorInteger[#][[1, 1]]&/@Select[Range[200], CompositeQ] (* Harvey P. Dale, Mar 16 2023 *)
PROG
(Magma) [ PrimeDivisors(n)[1]: n in [2..140] | not IsPrime(n) ]; // Klaus Brockhaus, Jun 23 2009
(Haskell)
a056608 = a020639 . a002808 -- Reinhard Zumkeller, Mar 29 2014
(PARI) forcomposite(n=1, 1e2, p=factor(n)[1, 1]; print1(p, ", ")) \\ Felix Fröhlich, Aug 03 2014
(Python)
from sympy import composite, factorint
def A056608(n):
return min(factorint(composite(n))) # Chai Wah Wu, Jul 22 2019
CROSSREFS
Cf. A052369 (largest prime factor of n, where n runs through composite numbers). - Klaus Brockhaus, Jun 23 2009
Cf. A160180.
Sequence in context: A306249 A064656 A270776 * A091787 A087040 A065569
KEYWORD
easy,nonn
AUTHOR
Odimar Fabeny, Aug 07 2000
EXTENSIONS
More terms from James A. Sellers, Aug 25 2000
Definition corrected by Reinhard Zumkeller, Mar 29 2014
Name changed by Alonso del Arte, Aug 21 2014
STATUS
approved