The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A091787 a(1) = 2. To get a(n+1), write the string a(1)a(2)...a(n) as xy^k for words x and y (where y has positive length) and k is maximized, i.e., k = the maximal number of repeating blocks at the end of the sequence so far. Then a(n+1) = max(k,2). 21
 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 3, 3, 3, 4, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 3, 3, 3, 4, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Here xy^k means the concatenation of the words x and k copies of y. a(77709404388415370160829246932345692180) = 5 is the first time 5 appears. This is also the concatenation of the glue strings of A090822, whose respective lengths are given in A091579. - M. F. Hasler, Oct 04 2018 REFERENCES N. J. A. Sloane, Seven Staggering Sequences, in Homage to a Pied Puzzler, E. Pegg Jr., A. H. Schoen and T. Rodgers (editors), A. K. Peters, Wellesley, MA, 2009, pp. 93-110. LINKS Giovanni Resta, Table of n, a(n) for n = 1..10000 F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, A Slow-Growing Sequence Defined by an Unusual Recurrence, J. Integer Sequences, Vol. 10 (2007), #07.1.2. B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, On Curling Numbers of Integer Sequences, arXiv:1212.6102 [math.CO], Dec 25 2012. B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, On Curling Numbers of Integer Sequences, Journal of Integer Sequences, Vol. 16 (2013), Article 13.4.3. N. J. A. Sloane, Seven Staggering Sequences. EXAMPLE To get a(2): a(1) = 2 = (2)^1, so k = 1, a(2) = 2. To get a(3): a(1)a(2) = 22 = (2)^2, so a(3) = k = 2. To get a(4): a(1)a(2)a(3) = 222 = (2)^3, so a(3) = k = 3. PROG (PARI) A091787(n, A=[])={while(#Ak||break; k=m); A=concat(A, k)); A} \\ M. F. Hasler, Oct 04 2018 CROSSREFS Cf. A090822, A091799. Sequence in context: A064656 A270776 A056608 * A087040 A065569 A262941 Adjacent sequences:  A091784 A091785 A091786 * A091788 A091789 A091790 KEYWORD nonn AUTHOR N. J. A. Sloane, Mar 07 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 11 03:22 EDT 2020. Contains 336421 sequences. (Running on oeis4.)