OFFSET
1,3
COMMENTS
The previous name, which does not match the data as observed by Luc Rousseau, was: Quotient of squarefree kernels of A002944(n) and A001405.
a(n) is the unique prime p not greater than n missing in the prime factorization of A001142(n), if such a prime exists; a(n) is 1 otherwise. - Luc Rousseau, Jan 01 2019
LINKS
Luc Rousseau, Table of n, a(n) for n = 1..1000 (first 90 terms from Labos Elemer)
FORMULA
EXAMPLE
From Luc Rousseau, Jan 02 2019: (Start)
In Pascal's triangle,
- row n=3 (1 3 3 1) contains no number with prime factor 2, so a(3) = 2;
- row n=4 (1 4 6 4 1) contains, for all p prime <= 4, a multiple of p, so a(4) = 1;
- row n=5 (1 5 10 10 5 1) contains no number with prime factor 3, so a(5) = 3;
etc.
(End)
MATHEMATICA
L[n_] := Table[Binomial[n, k], {k, 1, Floor[n/2]}]
c[n_] := Complement[Prime /@ Range[PrimePi[n]], First /@ FactorInteger[Times @@ L[n]]]
a[n_] := Module[{x = c[n]}, If[x == {}, 1, First[x]]]
Table[a[n], {n, 1, 100}]
(* Luc Rousseau, Jan 01 2019 *)
PROG
(PARI) rad(n) = factorback(factorint(n)[, 1]); \\ A007947
b(n) = prod(m=1, n, binomial(n, m)); \\ A001142
a(n) = rad(n!)/rad(b(n)); \\ Michel Marcus, Jan 02 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Aug 07 2000
EXTENSIONS
Definition and example changed by Luc Rousseau, Jan 02 2019
STATUS
approved