login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A096107
Triangle read by rows: row n lists cubic residues modulo n.
1
1, 1, 2, 1, 3, 1, 2, 3, 4, 1, 5, 1, 6, 1, 3, 5, 7, 1, 8, 1, 3, 7, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 5, 7, 11, 1, 5, 8, 12, 1, 13, 1, 2, 4, 7, 8, 11, 13, 14, 1, 3, 5, 7, 9, 11, 13, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1, 17, 1, 7, 8, 11, 12, 18, 1, 3, 7, 9, 11, 13, 17, 19, 1, 8
OFFSET
2,3
COMMENTS
Row n has A087692(n) terms. - Robert Israel, Jan 04 2015
EXAMPLE
1;
1,2;
1,3;
1,2,3,4;
1,5;
1,6;
1,3,5,7;
1,8;
1,3,7,9;
Row 5 contains 1,2,3,4 because (in mod 5) 1^3 = 1, 3^3 = 2, 2^3 = 3, and 4^3 = 4. - Geoffrey Critzer, Jan 07 2015
MAPLE
for n from 2 to 30 do
op({seq(`if`(igcd(i, n)=1, i^3 mod n, NULL), i=1..n-1)})
# if using Maple 11 or earlier, replace this by
# op(sort(convert({seq(`if`(igcd(i, n)=1, i^3 mod n, NULL), i=1..n-1)}, list)))
od; # Robert Israel, Jan 04 2015
MATHEMATICA
Table[Select[Range[n],
CoprimeQ[#, n] && IntegerQ[PowerMod[#, 1/3, n]] &], {n, 1, 20}] // Grid
(* Geoffrey Critzer, Jan 04 2015 *)
PROG
(PARI) maybecubegcd1(n) = { for(x=2, n, b=floor(x-1); a=vector(b+1); for(y=1, b, z=y^3%x; if(z<>0, a[y]=z; ) ); s=vecsort(a); c=1; for(j=2, b+1, if(s[j]<>s[j-1], c++; if(gcd(s[j], x)==1, print1(s[j]", ")) ) ); ) }
CROSSREFS
Sequence in context: A038566 A020652 A293248 * A329585 A128487 A056609
KEYWORD
nonn,tabf
AUTHOR
Cino Hilliard, Jul 22 2004
EXTENSIONS
Edited by Don Reble, May 07 2006
STATUS
approved