OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of eta(q^2)^5 * eta(q^6)^2 / (eta(q)^2 * eta(q^4)^2* eta(q^12)) in powers of q.
Euler transform of period 12 sequence [ 2, -3, 2, -1, 2, -5, 2, -1, 2, -3, 2, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (96 t)) = 1536^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A260308.
G.f.: Sum_{i,j in Z} (-1)^j * x^(i^2 + 6*j^2).
EXAMPLE
G.f. = 1 + 2*x + 2*x^4 - 2*x^6 - 4*x^7 + 2*x^9 - 4*x^10 - 4*x^15 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, -q^6], {q, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^6 + A)^2 / (eta(x + A)^2 * eta(x^4 + A)^2* eta(x^12 + A)), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Jul 22 2015
STATUS
approved