login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143068
Expansion of phi(q) / phi(-q^6) in powers of q where phi() is a Ramanujan theta function
5
1, 2, 0, 0, 2, 0, 2, 4, 0, 2, 4, 0, 4, 8, 0, 4, 10, 0, 8, 16, 0, 8, 20, 0, 14, 30, 0, 16, 36, 0, 24, 52, 0, 28, 64, 0, 42, 88, 0, 48, 108, 0, 68, 144, 0, 80, 176, 0, 108, 230, 0, 128, 280, 0, 170, 360, 0, 200, 436, 0, 260, 552, 0, 308, 666, 0, 392, 832, 0
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of eta(q^2)^5 * eta(q^12) / (eta(q) * eta(q^4) * eta(q^6))^2 in powers of q.
Euler transform of period 12 sequence [ 2, -3, 2, -1, 2, -1, 2, -1, 2, -3, 2, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (96 t)) = (3/2)^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A143066.
a(3*n + 2) = 0.
G.f.: ( Sum_{k in Z} x^k^2 ) / ( Sum_{k in Z} (-x^6)^k^2 ).
EXAMPLE
G.f. = 1 + 2*q + 2*q^4 + 2*q^6 + 4*q^7 + 2*q^9 + 4*q^10 + 4*q^12 + 8*q^13 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] / EllipticTheta[ 4, 0, q^6], {q, 0, n}]; (* Michael Somos, Sep 07 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^12 + A) / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A))^2, n))};
CROSSREFS
Cf. A143066.
Sequence in context: A260309 A046113 A262938 * A261202 A334596 A291900
KEYWORD
nonn
AUTHOR
Michael Somos, Jul 21 2008
STATUS
approved