login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143065
Expansion of quotient of a Ramanujan false theta series by the theta series of triangular numbers in powers of x.
1
1, 0, 0, -1, 1, -2, 2, -3, 4, -5, 6, -8, 11, -13, 16, -21, 27, -32, 39, -49, 61, -73, 87, -107, 131, -155, 184, -223, 267, -315, 372, -443, 526, -617, 722, -852, 1002, -1167, 1359, -1590, 1854, -2148, 2488, -2888, 3346, -3859, 4444, -5128, 5909, -6779, 7773
OFFSET
0,6
REFERENCES
S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 41, 13th equation.
FORMULA
G.f.: ( 1 + x - x^5 - x^8 + x^16 + x^21 - ... ) / ( 1 + x + x^3 + x^6 + x^10 + x^15 + ... ). [Ramanujan]
G.f.: 1 - x^3 * (1 - x) / (1 - x^2)^2 + x^8 * (1 - x) * (1 - x^3) / ((1 - x^2)^2 * (1 - x^4)^2) - ... [Ramanujan]
Convolution with A010054 is A143064.
EXAMPLE
G.f. = 1 - x^3 + x^4 - 2*x^5 + 2*x^6 - 3*x^7 + 4*x^8 - 5*x^9 + 6*x^10 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QHypergeometricPFQ[ {x}, {x^2}, x^2, x^3], {x, 0, n}]; (* Michael Somos, Sep 07 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( sum(k=0, n, if( issquare( 3*k + 1, &m), (-1)^(m \ 3) * x^k ), A) / sum(k=0, (sqrtint(8*n + 1) - 1) \ 2, x^((k^2 + k) / 2), A), n))};
(PARI) {a(n) = if( n<0, 0, polcoeff( sum(k=0, sqrtint(n+1) - 1, (-1)^k * x^(k^2 + 2*k) * prod(j=1, k, (1 - x^(2*j - 1)) / (1 - x^(2*j))^2, 1 + O(x^(n + 1 - k^2 - 2*k)))), n))};
CROSSREFS
Sequence in context: A130082 A241377 A266750 * A192660 A173692 A316079
KEYWORD
sign
AUTHOR
Michael Somos, Jul 21 2008
STATUS
approved